Strengthening the EU response to prevention and control of Antimicrobial Resistance (AMR)

Policy priorities for effective implementation

Michael Anderson
Dimitra Panteli
Elias Mossialos

In collaboration with the Belgian Federal Public Service (FPS) Health, Food Chain Safety and Environment (HFCSE)
Keywords:
- Anti-bacterial agents
- Drug resistance, microbial
- Drug resistance, bacterial
- Health policy
- Health governance
- Biomedical research
- One Health

What is a Policy Brief?
A policy brief is a short publication specifically designed to provide policy makers with evidence on a policy question or priority. Policy briefs:
- Bring together existing evidence and present it in an accessible format
- Use systematic methods and make these transparent so that users can have confidence in the material
- Tailor the way evidence is identified and synthesised to reflect the nature of the policy question and the evidence available
- Are underpinned by a formal and rigorous open peer review process to ensure the independence of the evidence presented.

Each brief has a one page key messages section; a two page executive summary giving a succinct overview of the findings; and a review setting out the evidence. The idea is to provide instant access to key information and additional detail for those involved in drafting, informing or advising on the policy issue.

Policy briefs provide evidence for policy-makers not policy advice. They do not seek to explain or advocate a policy position but to set out clearly what is known about it. They may outline the evidence on different prospective policy options and on implementation issues, but they do not promote a particular option or act as a manual for implementation.

This policy brief is one of a new series to meet the needs of policy-makers and health system managers. The aim is to develop key messages to support evidence-informed policy-making and the editors will continue to strengthen the series by working with authors to improve the consideration given to policy options and implementation.

© World Health Organization, 2024
(acting as the host organization for, and secretariat of, the European Observatory on Health Systems and Policies)

Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that the WHO, the European Observatory on Health Systems and Policies or any of its Partners endorses any specific organization, products or services. The use of the WHO and the European Observatory on Health Systems and Policies logo is not permitted. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO) or the European Observatory on Health Systems and Policies. WHO and the European Observatory on Health Systems and Policies are not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization (http://www.wipo.int/amc/en/mediation/rules/).

Cataloguing-in-Publication (CIP) data. CIP data are available at http://apps.who.int/iris.

Sales, rights and licensing. To purchase WHO publications, see https://www.who.int/publications/book-orders. To submit requests for commercial use and queries on rights and licensing, please contact contact@obs.who.int.

Third-party materials. If you wish to reuse material from this work that is attributed to a third party, such as tables, figures or images, it is your responsibility to determine whether permission is needed for that reuse and to obtain permission from the copyright holder. The risk of claims resulting from infringement of any third-party-owned component in the work rests solely with the user.

General disclaimers. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the WHO and the European Observatory on Health Systems and Policies or any of its Partners concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement.

The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the WHO or the European Observatory on Health Systems and Policies or any of its Partners in preference to others of a similar nature that are not mentioned.

Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the European Observatory on Health Systems and Policies to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied.

The responsibility for the interpretation and use of the material lies with the reader. In no event shall the WHO, the European Observatory on Health Systems and Policies or any of its Partners be liable for damages arising from its use.

The named authors alone are responsible for the views expressed in this publication. The views and opinions expressed in Observatory publications do not necessarily represent the official policy of the Participating Organizations.
Strengthening the EU response to prevention and control of Antimicrobial Resistance (AMR)
Policy priorities for effective implementation

Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>2</td>
</tr>
<tr>
<td>List of contributors</td>
<td>3</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>4</td>
</tr>
<tr>
<td>Acronyms</td>
<td>5</td>
</tr>
<tr>
<td>List of tables, figures and boxes</td>
<td>6</td>
</tr>
<tr>
<td>Key messages</td>
<td>7</td>
</tr>
<tr>
<td>Executive summary</td>
<td>8</td>
</tr>
<tr>
<td>Policy Brief</td>
<td></td>
</tr>
<tr>
<td>1. Background</td>
<td>10</td>
</tr>
<tr>
<td>2. Boosting implementation of effective strategies to combat AMR</td>
<td>16</td>
</tr>
<tr>
<td>3. Conclusions</td>
<td>35</td>
</tr>
<tr>
<td>4. References</td>
<td>36</td>
</tr>
<tr>
<td>5. Annex</td>
<td>45</td>
</tr>
</tbody>
</table>

Authors

Michael Anderson, Health Organisation, Policy, Economics (HOPE), Centre for Primary Care & Health Services Research, The University of Manchester, and LSE Health, Department of Health Policy, London School of Economics and Political Science, United Kingdom

Dimitra Panteli, European Observatory on Health Systems and Policies

Elias Mossialos, LSE Health, Department of Health Policy, London School of Economics and Political Science, United Kingdom, and European Observatory on Health Systems and Policies

The authors and editors are grateful to the reviewers who commented on this publication and contributed their expertise.
Foreword

In today’s complex landscape of public health, few challenges stand as prominently as antimicrobial resistance (AMR). This multifaceted issue not only poses a direct threat to individual health but also reverberates across healthcare systems, agricultural practices and global economies.

AMR’s impact on public health is profound and far-reaching. As pathogens develop increasing resistance to antimicrobials, treating infections becomes more difficult, leading to prolonged illnesses, increased mortality rates and heightened healthcare costs. Moreover, the effects extend beyond human health, affecting animal health and welfare, and the environment.

Addressing the menace of AMR demands a united front. A ‘One Health’ approach, recognizing the interconnectedness of human, animal, plant and environmental health, is essential. By fostering collaboration among diverse stakeholders, including the Directorate-General for Health and Food Safety (DG-SANTE), the European Health Emergency Preparedness and Response Authority (HERA), and other EU institutions, we can develop comprehensive strategies to combat AMR and protect public health.

While the challenges posed by AMR are intimidating, there is reason for optimism. International and national efforts to address AMR have gained momentum in recent years, culminating in the establishment of EU-level targets and the development of robust EU-level and national-level action plans. However, effective implementation remains a significant obstacle, with differences persisting among Member States.

This brief, presented under the auspices of the Belgian Presidency of the Council of the EU, serves as a vital exploration of the obstacles and opportunities inherent in implementing strategies to combat AMR. From enhancing antimicrobial stewardship in hospitals and the community sector to strengthening biosecurity measures in agricultural settings, each step forward requires careful consideration and collaboration across disciplines.

At the heart of our response to AMR lies strong and committed leadership. Leaders at all levels must navigate the complexities of this issue, designating clear roles and responsibilities among relevant stakeholders, and ensure accountability mechanisms are upheld. Further enablers for collective and sustainable actions include enhancing surveillance systems, advocating for responsible antimicrobial use, promoting antimicrobial stewardship programmes, and strengthening infection prevention and control measures.

As we embark on this critical effort, let us remain resolute in our commitment to addressing AMR. By strengthening governance structures and prioritizing AMR on the political agenda, we can pave the way for a healthier future for generations to come.

Prof. Dr. Dirk Ramaekers
Chair Federal Public Service for Public Health, Food Chain Safety & Environment
List of contributors

Table A: List of contributors from the Belgian Federal Public Service (FPS) Health, Food Chain Safety and Environment (HFCSE)

<table>
<thead>
<tr>
<th>CONTRIBUTOR</th>
<th>ROLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeynep Darici</td>
<td>Expert in European and International policies</td>
</tr>
<tr>
<td>Laurane Dubrunfaut</td>
<td>Expert in European and International policies</td>
</tr>
<tr>
<td>Thomas Janssens</td>
<td>Policy advisor – One Health coordinator of the National Action Plan on Antimicrobial Resistance (NAP AMR)</td>
</tr>
<tr>
<td>Katie Vermeersch</td>
<td>AMR coordinator – Animal Pillar</td>
</tr>
<tr>
<td>Vincent Dehon</td>
<td>Biocides policy officer</td>
</tr>
<tr>
<td>Melissa Rousseau</td>
<td>AMR coordinator – Environmental Pillar</td>
</tr>
<tr>
<td>Jennifer Pirotte</td>
<td>Biocides expert</td>
</tr>
<tr>
<td>Miryam Benalla</td>
<td>Division Plant Health – Scientific expert attaché – Plant Pillar</td>
</tr>
<tr>
<td>Lieven van Herzele</td>
<td>Division Plant Health – Head of the Division – Plant Pillar</td>
</tr>
<tr>
<td>Kristien Braeken</td>
<td>Division Plant Health – Scientific expert attaché – Plant Pillar</td>
</tr>
</tbody>
</table>

Table B: Members of the Belgian Antibiotic Policy Coordination Committee (BAPCOC) support team

<table>
<thead>
<tr>
<th>MEMBER</th>
<th>ROLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ivo Deckers</td>
<td>AMR coordinator – Human Pillar / coordinator BAPCOC support team</td>
</tr>
<tr>
<td>Annemie Vlayen</td>
<td>Quality and Patient Safety cell leader</td>
</tr>
<tr>
<td>An Caluwaerts</td>
<td>Infection Prevention and Control (IPC) focal point</td>
</tr>
<tr>
<td>Ann Versporten</td>
<td>Antimicrobial Stewardship (AMS) in hospitals focal point</td>
</tr>
<tr>
<td>Florine Croquet</td>
<td>Antimicrobial Stewardship (AMS) in ambulatory care focal point</td>
</tr>
<tr>
<td>Harun Yaras</td>
<td>Host coordinator</td>
</tr>
<tr>
<td>Heidi Van Den Bossche</td>
<td>Antimicrobial Stewardship (AMS) hospital medicine focal point</td>
</tr>
<tr>
<td>Pascaline De Bie</td>
<td>Diagnostic Stewardship (DS) and Hand Hygiene focal point</td>
</tr>
</tbody>
</table>
Acknowledgements

This publication was produced as a collaboration between the European Observatory on Health Systems and Policies, the London School of Economics and Political Science (LSE), and the Belgian Federal Public Service (FPS) Health, Food Chain Safety and Environment (HFCSE). It is being published to support the Belgian Presidency of the Council of the EU high-level meeting on Antimicrobial Resistance. The FPS HFCSE team was involved in the conception and drafting of this policy brief (individual contributors are outlined in Table A on page 3). Various scientific and professional organizations in Belgium along with individual experts have also provided feedback and suggested text for the brief, including the Belgian Antibiotic Policy Coordination Committee (BAPCOC, see Table B on page 3), Sciensano, the Federal Agency for Medicines and Health Products, and the Federal Agency for the Safety of the Food Chain. We would also like to acknowledge the contribution of all the experts from EU Member States and the European institutions who participated in a half-day workshop held in preparation of this brief to discuss implementation challenges for relevant AMR interventions (see 5. Annex). We are also grateful to Dominique L. Monnet (ECDC), and Ernesto Liebana (EFSA) who gave up their time for follow up interviews to provide further feedback. While insights from the workshop and feedback from stakeholders influenced the development of this brief, its contents do not necessarily reflect the views of the individuals or their institutions who participated in those processes.

We also extend our thanks to our colleagues at the European Observatory for their support in initiating, researching and producing this brief: Beatrice Durvy, Josep Figueras, Lucie Jackson, Suszy Lessof, Jonathan North and Erica Richardson. Many thanks also to Alison Chapman and Neil Adams for production support.
<table>
<thead>
<tr>
<th>Acronyms</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMR</td>
<td>antimicrobial resistance</td>
</tr>
<tr>
<td>AMS</td>
<td>antimicrobial stewardship</td>
</tr>
<tr>
<td>AMU</td>
<td>antimicrobial use</td>
</tr>
<tr>
<td>API</td>
<td>active pharmaceutical ingredient</td>
</tr>
<tr>
<td>ARG</td>
<td>antimicrobial resistance gene</td>
</tr>
<tr>
<td>ARSIA</td>
<td>Association Régionale de Santé et d’Identification Animales</td>
</tr>
<tr>
<td>ASP</td>
<td>antimicrobial stewardship programme</td>
</tr>
<tr>
<td>ATP</td>
<td>adenosine triphosphate</td>
</tr>
<tr>
<td>AWaRe</td>
<td>Access, Watch, Reserve</td>
</tr>
<tr>
<td>BAPCOC</td>
<td>Belgian Antibiotic Policy Coordination Committee</td>
</tr>
<tr>
<td>CAUTI</td>
<td>catheter-associated urinary tract infection</td>
</tr>
<tr>
<td>CARB-X</td>
<td>Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator</td>
</tr>
<tr>
<td>CDSS</td>
<td>clinical decision support system</td>
</tr>
<tr>
<td>CLABSI</td>
<td>central line-associated bloodstream infection</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reactive protein</td>
</tr>
<tr>
<td>DDD</td>
<td>defined daily dose</td>
</tr>
<tr>
<td>DG-SANTE</td>
<td>Directorate-General for Health and Food Safety</td>
</tr>
<tr>
<td>DG-RTD</td>
<td>Directorate-General for Research and Innovation</td>
</tr>
<tr>
<td>EARSS</td>
<td>European Antimicrobial Surveillance System</td>
</tr>
<tr>
<td>EC</td>
<td>European Commission</td>
</tr>
<tr>
<td>ECDC</td>
<td>European Centre for Disease Prevention and Control</td>
</tr>
<tr>
<td>EEA</td>
<td>European Economic Area</td>
</tr>
<tr>
<td>EFSA</td>
<td>European Food Safety Authority</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>ERA</td>
<td>environmental risk assessment</td>
</tr>
<tr>
<td>ESVAC</td>
<td>European Surveillance of Veterinary Antimicrobial Consumption</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FAO</td>
<td>Food and Agriculture Organization (of the United Nations)</td>
</tr>
<tr>
<td>FBO</td>
<td>food business operator</td>
</tr>
<tr>
<td>GARDP</td>
<td>Global Antibiotic Research and Development Partnership</td>
</tr>
<tr>
<td>GDP</td>
<td>gross domestic product</td>
</tr>
<tr>
<td>GMP</td>
<td>good manufacturing practice</td>
</tr>
<tr>
<td>GP</td>
<td>general practitioner</td>
</tr>
<tr>
<td>HAI</td>
<td>healthcare-associated infection</td>
</tr>
<tr>
<td>HAP</td>
<td>hospital-associated pneumonia</td>
</tr>
<tr>
<td>HERA</td>
<td>Health Emergency Response Authority</td>
</tr>
<tr>
<td>IGZ</td>
<td>Health Care Inspectorate (of the Kingdom of the Netherlands)</td>
</tr>
<tr>
<td>IPC</td>
<td>infection prevention and control</td>
</tr>
<tr>
<td>IT</td>
<td>information technology</td>
</tr>
<tr>
<td>JPIAMR</td>
<td>Joint Programming Initiative on Antimicrobial Resistance</td>
</tr>
<tr>
<td>MDRO</td>
<td>multidrug-resistant organism</td>
</tr>
<tr>
<td>MRP</td>
<td>mutual recognition procedure</td>
</tr>
<tr>
<td>MRSA</td>
<td>methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>MUMS</td>
<td>minor use or minor species</td>
</tr>
<tr>
<td>NVR</td>
<td>New Veterinary Regulation</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OHHLEP</td>
<td>One Health High-Level Expert Panel</td>
</tr>
<tr>
<td>PNEC</td>
<td>predicted no-effect concentration</td>
</tr>
<tr>
<td>POCT</td>
<td>point-of-care testing</td>
</tr>
<tr>
<td>PPB</td>
<td>plant pathogenic bacteria</td>
</tr>
<tr>
<td>PPS</td>
<td>point prevalence survey</td>
</tr>
<tr>
<td>R&D</td>
<td>research and development</td>
</tr>
<tr>
<td>RCT</td>
<td>randomized controlled trial</td>
</tr>
<tr>
<td>RSV</td>
<td>respiratory syncytial virus</td>
</tr>
<tr>
<td>SME</td>
<td>small and medium-sized enterprise</td>
</tr>
<tr>
<td>SPC</td>
<td>Summary of Product Characteristic</td>
</tr>
<tr>
<td>SSI</td>
<td>surgical site infection</td>
</tr>
<tr>
<td>TARGET</td>
<td>Treat Antibiotics Responsibly, Guidance, Education and Tools</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>UNEP</td>
<td>United Nations Environment Programme</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>VAP</td>
<td>ventilator-associated pneumonia</td>
</tr>
<tr>
<td>VASC</td>
<td>Veterinary Advisory Service Contract</td>
</tr>
<tr>
<td>WASH</td>
<td>water, sanitation and hygiene</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WOAH</td>
<td>World Organisation for Animal Health</td>
</tr>
</tbody>
</table>
List of tables, figures and boxes

Tables

Table 1: WHO groupings of AMR interventions to improve antibiotic prescribing behaviours in healthcare settings 16
Table 2: Pathways through which vaccination can reduce AMR 20
Table 3: Selected implementation considerations for key AMR interventions in human health 21
Table 4: Selected implementation considerations for key AMR interventions in animal health 28
Table 5: Selected implementation considerations for key AMR interventions in environmental health 32
Table 6: Policy actions to secure sustainable access to antimicrobials 33

Figures

Figure 1: Projected trends in antimicrobial resistance in EU/EEA countries among priority antibiotic-bacterium combinations, by line of antimicrobial treatment 10
Figure 2: Overall volume of antibiotics prescribed in OECD countries for human consumption, 2011, 2019 and 2021 (or nearest years) 11
Figure 3: Incentives developed to encourage antimicrobial research and development can be aligned by considering public health and market factors, as well as implementation and feasibility 34

Boxes

Box 1: Antibiotic use for controlling plant pathogenic bacteria 12
Box 2: WHO AWaRe programme 12
Box 3: Importance of the One Health approach 13
Box 4: EU-level targets to reduce AMR 14
Box 5: Methodology behind the insights in this brief 15
Box 6: Point-of-care testing: a diagnostic tool to help physicians on the spot 17
Box 7: Drive-Antimicrobial Stewardship case study 17
Box 8: Optimizing environmental cleaning in healthcare facilities to reduce AMR 19
Box 9: The EU’s veterinary regulation of 2019 24
Box 10: Antimicrobial stewardship programmes (ASPs) and clinical decision support systems (CDSSs) in veterinary medicine 25
Box 11: Biocheck and FarmFit systems 25
Box 12: Research projects to understand spread of AMR in the environment in Belgium 30
Key messages

Antimicrobial resistance (AMR) is a major global public health challenge. It is driven by inappropriate antimicrobial use and poor infection prevention and control across human, animal, plant, and environmental health settings. With resistance to second and third-line antimicrobials growing the threat is profound. Key messages for policymakers are that:

• **A paradigm change is needed based on collective responsibility.** National and international commitments to a “One-Health” approach offer some hope and bring sectors, disciplines, and communities together but despite years of policy discussion and much agreement, action has often been sluggish and ineffective.

• **Successful implementation is critical.** The factors that enable it work best in combination and include:
 - Strong leadership commitment at all levels
 - Clear roles, responsibilities, and accountability mechanisms
 - Monitoring and surveillance with rapid feedback
 - Multidisciplinary teams and training
 - Tailored targets and benchmarking at multiple levels
 - Reimbursement models that incentivise appropriate antimicrobial use and prevention
 - Educational programmes and the promotion of awareness
 - Adequate funding for research, and
 - Policies which support sustainable innovation and access to effective antibiotics.

• **There are key, evidence-informed interventions that countries can usefully implement**

1. In human health settings, key measures that work include:
 - Antimicrobial stewardship programmes
 - Clinical decision support systems (CDSS) for prescribers
 - Control of falsified and counterfeit antimicrobials
 - Infection prevention and control
 - Vaccination to prevent the emergence and spread of key pathogens

2. Key effective interventions in animal health settings include:
 - Regulation and supervision to promote prudent use of antimicrobials
 - Improved biosecurity
 - Vaccination to prevent emergence and spread of key pathogens
 - Food safety compliance programmes

3. Key steps that can make a difference in environmental health settings include:
 - Improving wastewater treatment facilities
 - Limiting concentration of antimicrobials in discharges from the pharmaceutical industry
 - Improving waste management in agricultural production

• **Policy-makers face barriers to action** including an absence of accountability mechanisms, healthcare and veterinarian staffing shortages, limited diagnostic and surveillance capacity, delayed feedback of surveillance data, misinformation on social media, shortages of essential antimicrobials and vaccines and lack of resources.

• **EU institutions have a key role to play** from legislation, to surveillance, to technical advice. The EU adds particular value in evidence-based guidelines; the efficacy and safety of antimicrobials and vaccines; joint procurement; research funding; and in providing platforms to coordinate policy and share good practices.

• **Action in and by countries continues to be essential** including in strengthening AMR national action plans to achieve EU-level targets. Strong leadership, balancing top-down and bottom-up interventions, optimizing the use of public resources and fostering accountability and responsiveness all support implementation at the national (and sub-national) level.

• **Collaboration is critical and requires suitable (and stronger) governance** mechanisms at the European and global levels to foster effective links across sectors and between European, national, regional and local stakeholders.

• **Keeping AMR on international and national political agendas is crucial,** and countries holding the Presidency of the Council of the EU can play a pivotal role in advancing this agenda.
Executive summary

Antimicrobial resistance (AMR) leads to increased mortality and disability rates, alongside increased medical costs, prolonged hospital stays and socioeconomic impacts for households, communities and broader society. In 2019, it was estimated that antibiotic resistance directly caused 1.27 million deaths globally. Additionally, antibiotic resistance incurs approximately €1.1 billion in annual healthcare system costs for European Union (EU) and European Economic Area (EEA) countries.

AMR is driven by inappropriate antimicrobial use (AMU), as well as insufficient prevention and control across human, animal, plant and environmental health settings. Inconsistent access to essential antimicrobials and diagnostics further exacerbates the suboptimal treatment of infections. An insufficient antimicrobial research and development (R&D) pipeline also means that the supply of new antimicrobials is not sufficient to combat the increasing threat of AMR.

International and national efforts to tackle AMR have accelerated in recent years, with a significant milestone being the establishment of EU-level targets. However, the implementation of effective strategies varies among EU Member States and generally lags behind. Achieving the desired targets will require strengthening implementation of recommended AMR interventions.

This brief aims to summarize implementation considerations for effective strategies to address AMR. It draws upon guidance from the European Commission (EC), the World Health Organization (WHO), the Food and Agricultural Organization of the United Nations (FAO), the United Nations Environment Programme (UNEP), the World Organisation for Animal Health (WOAH) and the Organisation for Economic Co-operation and Development (OECD) to identify key recommended AMR interventions. Additionally, a workshop with representatives from EU institutions and Member States was conducted to identify implementation considerations. This brief will not cover considerations for effective strategies to address AMR in plant health settings.

Strengthening implementation of AMR interventions in human health settings requires:

- **Antimicrobial stewardship programmes (ASPs):** Strengthening implementation requires strong leadership commitment, combined with clear roles, responsibilities and accountability mechanisms, behavioural science approaches, improved diagnostic capacity and consistent access to antimicrobials.

- **Clinical decision support systems (CDSS) for prescribers:** Supporting implementation requires integration within electronic health records and prescriber software, user-friendly interfaces that minimize alert fatigue, use of updated guidelines, and investment in strengthening health IT infrastructure.

- **Regulation and related supervision to prevent falsified and counterfeit antimicrobials:** Robust traceability systems across supply chains, enhancing custom controls, inspections of pharmacies, and awareness campaigns are required to combat falsified and counterfeit antimicrobials.

- **Infection prevention and control (IPC) programmes:** IPC programmes should be aligned with ASPs and supported by legal and accountability frameworks, as well as monitoring and surveillance with rapid feedback mechanisms.

- **Vaccination to prevent emergence and spread of certain pathogens:** Vaccination should be integrated within AMR national action plans as a key strategic objective, and combined with efforts to address vaccine hesitancy and misinformation to strengthen implementation. There are also opportunities to prioritize which pathogens should be the focus of vaccine R&D, including implications for AMR.

Strengthening implementation of AMR interventions in animal health settings requires:

- **Regulation and related supervision to promote the prudent use of antimicrobials:** Prudent use of antimicrobials in animals could be optimized with sector-specific targets and benchmarking, payment mechanisms that adjust direct profits from antimicrobial sales, strict conditions on use of certain broad-spectrum antimicrobials, and aligning and updating summary product characteristics for veterinary antimicrobials across the EU. ASPs and CDSSs also have a key role in animal health to promote prudent use of antimicrobials.

- **Improved biosecurity to prevent emergence and spread of infection:** Contracts need to be designed to reward veterinarians for giving preventative and biosecurity advice, and the cost benefits of biosecurity need to be routinely reported and emphasized to farmers.

- **Vaccination to prevent emergence and spread of certain pathogens:** Investment is needed to stimulate R&D of novel vaccines in animal health, with an emphasis on unmet needs to reduce AMR and transmission to humans.

- **Food safety compliance programmes:** Food safety messages, such as thorough cooking and good hygiene practices, should be integrated into AMR awareness campaigns, and surveillance of AMR in food should be strengthened.

Strengthening implementation of AMR interventions in environmental health settings requires:

- **Optimizing wastewater treatment to minimize spread of AMR:** While the EU has a clear regulatory framework for wastewater treatment, investment in research and consensus building could help establish which improvements in wastewater treatment facilities should be prioritized to reduce AMR.
• Limiting dissemination from the pharmaceutical industry: Current concentration targets for antimicrobials in waste effluent from the pharmaceutical industry are voluntary, and mandating maximum concentration targets at the EU level may improve compliance and consistency of implementation.

• Improving waste management in agricultural production: Improvements in agricultural waste management would have multiple benefits including reducing the dissemination of AMR in the environment and promoting sustainable soil management practices, although more evidence is needed on acceptable concentration levels of antimicrobials.

Common enablers for implementation include: the importance of strong leadership commitment, combined with clear roles, responsibilities and accountability mechanisms; ensuring sufficient funding for interventions listed within national action plans; use of targets to drive progress through integrated One Health surveillance systems at the national level; optimizing reimbursement and revenue models to ensure that antimicrobial prescribing is appropriate; enhanced public awareness and training initiatives; and investment in research and evaluation of AMR interventions. Keeping AMR on international and national political agendas is key, and subsequent Presidencies of the Council of the EU could play a pivotal role in advancing this agenda.
Policy brief

1. Background

Why is it critical to address AMR now?

Antimicrobials – including antibiotics, antivirals, antifungals and antiprotozoals – are medicines used to prevent and treat infections in humans, animals and plants. AMR refers to the ability of micro-organisms to survive or to grow in the presence of a concentration of an antimicrobial agent which is usually sufficient to inhibit or kill them (EUR-Lex, 2018a). AMR is described by the World Health Organization as one of the top 10 public health challenges worldwide as it poses major threats to modern medicine and global health (WHO, 2019a). The European Commission classifies AMR as one of the top three priority health threats in the EU (European Commission, 2022a).

AMR leads to increased mortality and disability.

AMR has made common infections increasingly difficult or impossible to treat, and leads to higher medical costs, prolonged hospital stays and increased mortality. Antimicrobials are not just essential for the treatment of infections, but also facilitate the safe provision of surgery and oncology care. In 2019, it was estimated that 4.95 million deaths worldwide were associated with bacterial AMR, including 1.27 million deaths directly attributable to bacterial AMR. Specifically for the WHO European Region, it is estimated that 541,000 deaths were associated with bacterial AMR in 2019, including 133,000 deaths directly attributable to bacterial AMR (Mestrovic et al., 2022).

AMR is responsible for significant costs for individuals, health systems and society.

Individuals that contract resistant pathogens are at risk of mortality, long-term disability, catastrophic health expenditure and lost income, as well as delay of effective treatment, with suffering and socioeconomic impacts for households and communities. The estimated cost of AMR for healthcare systems in Europe is €1.1 billion per year (OECD, ECDC, EFSA & EMA, 2022). These costs result from several impacts of AMR, including increased hospitalization, greater length of stay, increased treatment costs, and reduced ability to safely provide treatments such as chemotherapy and surgical care. AMR also has significant economic implications for societies at large resulting from reductions in the size and productivity of the workforce, increased healthcare expenditure, and reductions in livestock production and trade. These factors all contribute to reduced gross domestic product (GDP) associated with AMR, with estimates indicating that AMR will cost the global economy up to $100 trillion by 2050 (Review on Antimicrobial Resistance, 2016).

Resistance to second- and third-line antimicrobials is growing.

When an infection does not respond to a first-line antimicrobial treatment (the most effective and safest treatment option for the patient), healthcare professionals turn to more expensive alternatives, such as second- and third-line antimicrobials (the last treatment options available). Resistance to last-resort antimicrobials is growing. Figure 1 shows that AMR to second- and third-line antimicrobials, used when bacteria are resistant to common antimicrobials, is both high and projected to keep increasing in EU/EEA countries.

Figure 1: Projected trends in antimicrobial resistance in EU/EEA countries among priority antibiotic-bacterium combinations, by line of antimicrobial treatment

Source: OECD, 2023a.
Note: Historical data go from 2005 to 2020, and forecasts start in 2021.
What are the main drivers of AMR?

The emergence of AMR is multifactorial and dynamic, and driven by factors such as inappropriate use of antimicrobials, suboptimal prevention of infection, and an insufficient antimicrobial pipeline. The drivers of AMR involve stakeholders working across human, animal, plant and environmental health.

Inappropriate antimicrobial use in human, animal and plant health drives increased AMR.

Wrong antimicrobial choices, inadequate dosing and unnecessarily extended treatment drive AMR within human, animal and plant health settings (Agyeman et al., 2022). This is because antimicrobials can exert a ‘selective pressure’ on pathogens, where random mutations create resistant pathogens that survive antimicrobial treatment to then multiply and spread.

The overall volume of antimicrobials prescribed in human health settings in 2021 varied three-fold across OECD countries (Figure 2). The observed variation might be explained, on the supply side, by differences in the guidelines and incentives that govern primary care prescribers and, on the demand side, by differences in attitudes and expectations regarding the optimal treatment of infectious illness. Worldwide, it is estimated that approximately two-thirds of all antimicrobials are used in animals rather than humans (Tiseo et al., 2020). The European Commission’s Farm to Fork Strategy aims to reduce the overall sales of antimicrobials in farm animals and aquaculture in the EU by 50%, down to 59.2mg/PCU in 2030 compared to 118.3mg/PCU in 2018 (European Commission, 2020a). According to the Thirteenth European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) report, aggregated sales declined significantly in 2022 and, according to the latest available data, over half of the targeted 50% reduction has already been achieved. However, total sales and trends vary greatly between the different reporting countries, from 2.1mg/PCU to 254.7mg/PCU (EMA, 2023). Differences in the composition of the animal population and production systems, as well as in disease incidence, prescription practices, daily doses used and treatment duration, may explain some of the variation in total sales between Member States (EMA, 2022). Increasingly, the extent of antibiotic use in plants has also been acknowledged (Box 1, page 12).

Figure 2: Overall volume of antibiotics prescribed in OECD countries for human consumption, 2011, 2019 and 2021 (or nearest years)

Source: OECD, 2023b.

Note: Data exclude products used in the treatment of addiction. Defined daily dose (DDD) is the assumed average maintenance dose per day for a drug used for its main indication in adults. For instance, the DDD for oral aspirin equals 3 grammes, the assumed maintenance daily dose to treat pain in adults. DDDs do not necessarily reflect the average daily dose actually used in a given country. For more details, see Norwegian Institute of Public Health, 2023.
From the animal health perspective, IPC is achieved conduct IPC monitoring (WHO, 2022a). Limited support at the national level for IPC training roll-out met all minimum requirements for IPC. Relevant gaps were participating countries (WHO, 2022a). However, very few IPC programme (a functioning programme with annual health settings carried out by WHO showed that an active requirements for national IPC programmes in human, animal and environmental infections (HAIs) (ECDC, 2022). IPC is also at the core of a number of other major global health priorities, including health emergencies and the International Health Regulations, patient and health worker safety, AMR action plans, sepsis prevention, Water, Sanitation and Hygiene (WASH), and integrated people-centred, high-quality care.

In 2021–2022, a detailed global survey on the minimum requirements for national IPC programmes in human health settings carried out by WHO showed that an active IPC programme (a functioning programme with annual workplans and budget) existed in about half of the participating countries (WHO, 2022a). However, very few met all minimum requirements for IPC. Relevant gaps were limited availability of a budget specifically dedicated to IPC, limited support at the national level for IPC training roll-out and monitoring of its effectiveness, and lack of expertise to conduct IPC monitoring (WHO, 2022a).

From the animal health perspective, IPC is achieved through a variety of measures, including biosecurity measures, good animal husbandry, vaccination, access to WASH, and monitoring and surveillance. Despite evidence that implementation of biosecurity measures can reduce AMU (Postma et al., 2016; Diana et al., 2020), there remains variation in implementation of recommended standards across Member States (Filippitzi et al., 2018; Souillard et al., 2024).

Several pathways contribute to the transmission and dissemination of AMR in the environment.

The environment is a major reservoir and driver of AMR. Resistant micro-organisms and their resistance genes enter the soil, air, water and sediments through various ways, including: (i) industrial and municipal wastewater (including hospital effluents); (ii) sewage sludge and spreading of animal manure; and (iii) aquaculture systems (Samreen, Malak & Abulreesh, 2021). The application of biocides, pharmaceuticals and plant protection products, such as fungicides, have also led to the selection of resistant micro-organisms, which causes serious challenges to the natural environment. Surveillance and monitoring of AMR in the environment is therefore crucial to understand the role played by antimicrobial residues in the emergence and spread of AMR, the levels on environmental contamination and the risk posed to human and animal health (Niegoswa, 2021).

Inconsistent access to essential antimicrobials contributes to suboptimal treatment of infections.

In addition to developing new antimicrobials, ensuring access to essential medications is vital for combating AMR. Numerous countries lack access to both new and pre-existing antimicrobials. In 2019, healthcare systems in the EU reported more than 1300 instances of antimicrobial shortages (European Commission, 2021a). This scarcity forces clinicians to resort to second-choice antimicrobials, potentially leading to prolonged infections and escalating the threat of AMR. WHO categorizes antimicrobials into three distinct tiers: ‘Access’, ‘Watch’ and ‘Reserve’, each determined by its potential for inducing resistance (Box 2).

Insufficient prevention and control of infection is a key contributor to increased AMR.

Infection prevention and control is key to reducing the risk and spread of AMR in human, animal and environmental health settings. A review of antibiotic-resistant infections in EU/EEA countries between 2016 and 2020, found that around 70% of cases of infections were healthcare-associated infections (HAIa) (ECDC, 2022). IPC is also at the core of a number of other major global health priorities, including health emergencies and the International Health Regulations, patient and health worker safety, AMR action plans, sepsis prevention, Water, Sanitation and Hygiene (WASH), and integrated people-centred, high-quality care.

In 2021–2022, a detailed global survey on the minimum requirements for national IPC programmes in human health settings carried out by WHO showed that an active IPC programme (a functioning programme with annual workplans and budget) existed in about half of the participating countries (WHO, 2022a). However, very few met all minimum requirements for IPC. Relevant gaps were limited availability of a budget specifically dedicated to IPC, limited support at the national level for IPC training roll-out and monitoring of its effectiveness, and lack of expertise to conduct IPC monitoring (WHO, 2022a).

From the animal health perspective, IPC is achieved through a variety of measures, including biosecurity
For most common infections, the ‘Access’ category is adequate, as these antimicrobials exhibit minimal resistance development. Resorting to less effective antimicrobials due to shortages worsens resistance and may necessitate the use of broader-spectrum alternatives, which carry their own resistance risks. However, it is concerning that even staple ‘Access’ antimicrobials like amoxicillin face regular shortages. Alarmingly, by 2020, eight nations within Europe had not achieved the WHO’s benchmark of ensuring that ‘Access’ antimicrobials constituted 60% of their consumption (WHO, 2019b).

The antimicrobial R&D pipeline is insufficient to meet the challenge of AMR.

In recent decades, only a few new antimicrobials have been developed, with most lacking novel features. This makes them vulnerable to developing resistance. In 2022, WHO described the current antimicrobial pipeline as insufficient to combat rising AMR (WHO, 2022c). Obstacles for antimicrobial R&D are substantial. Large pharmaceutical companies have exited antimicrobial R&D due to high failure rates, scientific challenges and lower profitability compared to other medicines. Consequently, academic institutions and small and medium-sized enterprises (SMEs) are now leading antimicrobial R&D. However, many SMEs face economic hardships upon launching new antimicrobials. Even with push incentives that lead to innovative preclinical approaches, SMEs struggle to get funding, especially during high-risk initial stages. These enterprises are in pursuit of strategies that would guarantee more consistent financial backing from the investors (Anderson, Panteli & Mossialos, 2023).

What has been done to tackle AMR so far at the international level?

Given the multiple drivers of AMR described in the previous section, developing policy responses to the drivers of AMR requires a ‘One Health’ approach (Box 3).

All countries are expected to implement and update AMR national action plans with a One Health approach.

Over the past 20 years, both international and national efforts to address AMR have increased substantially. Two significant global milestones mark this progress. First, the initiation of the World Health Organization Global Action Plan on Antimicrobial Resistance in 2015 (WHO, 2015), which called upon all nations to formulate national action plans by 2017. Second, the United Nations (UN) General Assembly reached a political consensus on AMR and has been launched at global level by the Quadripartite Alliance, which brings together four leading organizations: the Food and Agriculture Organization of the United Nations (FAO), the United Nations Environment Programme (UNEP), the World Health Organization (WHO) and the World Organization for Animal Health (WOAH) (FAO, UNEP, WHO & WOAH, 2022).

Among global public health challenges, the fight against AMR is one where the benefits of the One Health approach have been most frequently highlighted. The European One Health Action Plan against Antimicrobial Resistance (AMR), released in 2017, represents a landmark initiative uniting human health, animal health and environmental sectors in a collaborative effort to combat AMR (European Commission, 2017). This comprehensive plan lays out a strategic framework to safeguard public health, animal health and the environment. Implementing a One Health approach to combat AMR involves collaboration between human health, animal health and environmental sectors to address the interconnectedness of antimicrobial use and resistance in these domains.

Box 3: Importance of the One Health approach

‘One Health’ has been developing as a concept over the past 20 years (Gibbs, 2014), following the increasing realization that effective response to emerging zoonotic diseases requires intersectoral and interdisciplinary collaboration.

In 2022, the One Health High-Level Expert Panel (OHLEP) from the United Nations’ agencies released a formal definition of One Health: “One Health is an integrated, unifying approach that aims to sustainably balance and optimize the health of people, animals and ecosystems. It recognizes the health of humans, domestic and wild animals, plants, and the wider environment (including ecosystems) are closely linked and interdependent. The approach mobilizes multiple sectors, disciplines and communities at varying levels of society to work together to foster well-being and tackle threats to health and ecosystems, while addressing the collective need for healthy food, water, energy, and air; taking action on climate change, and contributing to sustainable development” (Mettlenleiter et al., 2023). The One Health Joint Plan of Action (2022–2026) includes several actions related to AMR and has been launched at global level by the Quadripartite Alliance, which brings together four leading organizations: the Food and Agriculture Organization of the United Nations (FAO), the United Nations Environment Programme (UNEP), the World Health Organization (WHO) and the World Organization for Animal Health (WOAH) (FAO, UNEP, WHO & WOAH, 2022).

Economic hardships upon launching new antimicrobials.

Among global public health challenges, the fight against AMR is one where the benefits of the One Health approach have been most frequently highlighted. The European One Health Action Plan against Antimicrobial Resistance (AMR), released in 2017, represents a landmark initiative uniting human health, animal health and environmental sectors in a collaborative effort to combat AMR (European Commission, 2017). This comprehensive plan lays out a strategic framework to safeguard public health, animal health and the environment. Implementing a One Health approach to combat AMR involves collaboration between human health, animal health and environmental sectors to address the interconnectedness of antimicrobial use and resistance in these domains.

EU-level targets for AMR in human and animal health were set out in 2023 and 2020, respectively.

Over the years, several Presidencies of the Council of the EU have focused on AMR as a policy priority (Anderson et al., 2019). The 2024 Belgian Presidency of the Council of the European Union was preceded by the Swedish (Jan–Jun 2023) and the Spanish (Jul–Dec 2023) Presidencies.
The three Presidencies had a common goal to keep the fight against AMR high on the political agenda of the next European Commission. On 13 June 2023, under the Swedish Presidency, the Council adopted the Commission's proposal for recommendations on stepping up EU actions to combat AMR (General Secretariat of the Council, 2023). After its adoption, the Recommendation was published in the Official Journal of the European Union (EUR-Lex, 2023). A major development contained within the Council Recommendations was the definition of targets to reduce antimicrobial consumption and AMR in human health (Box 4). The Commission intends to report on the progress of this Recommendation four years after its adoption. These targets also complement the aforementioned EU-level targets to reduce overall EU sales of antimicrobials for farmed animals and in aquaculture included in the Farm to Fork Strategy (European Commission, 2020a) and in the Zero Pollution Action Plan (European Commission, 2021b).

What does this brief add?

Despite increasing awareness of the detrimental effects of AMR and the complexity of its drivers, progress in terms of policy implementation has been slow. The purpose of this policy brief is to identify key enablers and barriers to sustainable implementation of recommended interventions to tackle AMR in human, animal and environmental health settings in line with the One Health approach and to provide a basis for future policy action. We acknowledge that plant health is also an important aspect of the One Health approach that is not covered within this policy brief but should be the subject of future research and policy discussion.

The brief zooms in on 12 interventions (five in human health, four in animal health and three in environmental health) identified through a targeted review of international policy documents from the WHO (WHO, 2015), European Commission (European Commission, 2017), UNEP (UNEP, 2023), WOAH (OIE, 2016; WOAH, 2022), FAO (FAO, 2016, 2021) and OECD (OECD, 2023b) (see Box 5). These are:

- **Human health:**
 1. Antimicrobial stewardship programmes to promote prudent antimicrobial use.
 2. Clinical decision support systems for prescribers.
 3. Regulation and related supervision to prevent falsified and counterfeit antimicrobials.
 4. Infection prevention and control programmes.
 5. Vaccination to prevent emergence and spread of certain pathogens.

- **Animal health:**
 1. Regulation and related supervision to promote the prudent use of antimicrobials.
 2. Improved biosecurity to prevent emergence and spread of infection.
 3. Vaccination to prevent emergence and spread of certain pathogens.
 4. Food safety compliance programmes.

- **Environmental health:**
 1. Optimizing wastewater treatment to minimize spread of AMR.
 2. Limiting dissemination from the pharmaceutical industry.
 3. Improving waste management in agricultural production.

<table>
<thead>
<tr>
<th>Box 4: EU-level targets to reduce AMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROPOSED TARGETS FOR AMR AND ANTIMICROBIAL CONSUMPTION IN HUMAN HEALTH (2023)</td>
</tr>
</tbody>
</table>
| • Decrease of 20% in the total consumption of antibiotics in humans in the EU by 2030 (using 2019 as baseline).
| • 65% of the total consumption of antibiotics in humans being from the ‘Access’ group, as per the AwaRe classification of the WHO by 2030.
| • By 2030, reduce by 15% bloodstream infections due to methicillin-resistant Staphylococcus aureus (MRSA); by 10% bloodstream infections due to third-generation cephalosporin-resistant Escherichia coli; and by 5% bloodstream infections due to carbapenem-resistant Klebsiella pneumoniae (using 2019 as a baseline).
| **TARGETS FOR ANTIMICROBIAL USE IN ANIMALS (2020)** |
| • 50% reduction of overall EU sales of antibiotics for farmed animals and in aquaculture by 2030 (using 2018 as a baseline). |

Source: Targets from (General Secretariat of the Council, 2023) and (European Commission, 2020a).
Box 5: Methodology behind the insights in this brief

A targeted literature review of international policy documents from the WHO (WHO, 2015), the European Commission (European Commission, 2017), UNEP (UNEP, 2023), WOAH (OIE, 2016; WOAH, 2022), FAO (FAO, 2016, 2021) and OECD (OECD, 2023b) was carried out in November 2023. These international organizations were selected because they have carried out seminal work on AMR, and their reports synthesize evidence derived from existing literature and expert consensus during the development of their policy documents.

Relevant operational, regulatory and financial enablers and barriers were identified in the literature and discussed during a workshop held virtually in February 2024. In total, representatives from 18/27 Member States attended. The majority of Member State representatives were AMR experts from their respective countries, with expertise in human, animal and environmental health. The remaining attendees were representatives from key EU institutions, including the European Centre for Disease Prevention and Control (ECDC), European Medicines Agency (EMA), EFSA, Directorate-General for Health and Food Safety (DG-SANTE), HERA, Directorate-General for Research and Innovation (DG RTD), and WHO EURO. A full list of representatives is provided in supplementary material (Annex).

The following sections summarize key implementation considerations for the selected interventions and outline roles and responsibilities of EU institutions and Member States where applicable. They are predominantly based on the insights gathered during the participatory approach described in Box 5, but also consider the detailed study of the barriers to effective development and implementation of national policies on AMR funded by the European Commission (European Commission et al., 2023) and the WHO Roadmap on Antimicrobial Resistance for the WHO European Region 2023–2030 (WHO Regional Office for Europe, 2023). They also incorporate case studies from Belgium to highlight what is possible at the national level.
2. Boosting implementation of effective strategies to combat AMR

The following sections briefly discuss key implementation enablers and barriers for the selected interventions, and how different actors can engage at the national and EU levels in the areas of human, animal and environmental health, and with regard to ensuring access to effective antimicrobials. The main findings are summarized in Tables 3, 4 and 5 (on pages 21–23, 28–29 and 32, respectively).

2.1. Human health

2.1.1 Antimicrobial stewardship programmes

Antimicrobial stewardship programmes are organizational or system-wide healthcare strategies that promote the appropriate use of antimicrobials through the implementation of evidence-based interventions (WHO, 2019c). These programmes encompass a diverse array of persuasive, restrictive and structural interventions (see Table 1), with most being multicomponent in nature. One structural intervention, point-of-care testing (POCT), is receiving increasing attention as a clinically- and cost-effective antimicrobial stewardship tool (Box 6, page 17). ASPs are known to be effective in both inpatient (Davey et al., 2017) and outpatient settings (Edeghere, Wilson & Hyde, 2010). Research has also shown that ASPs that involve a pharmacist are more effective than those that do not (Saha, Hawes & Mazza, 2019; Monmaturapoj et al., 2021; Kooda, Canterbury & Bellolio, 2022; Lee & An, 2022). It has been estimated that ASPs can prevent more than 3.7 million additional days of hospitalization annually in OECD countries (OECD, 2023b). These findings highlight the significance of investing in ASPs as a sustainable and cost-effective strategy to address AMR and improve overall healthcare efficiency.

Member States are responsible for designing policies that encourage the implementation of ASPs, however the ECDC plays a crucial role in conducting surveillance and country visits, and in providing training and education. The EC has also published EU Guidelines for the prudent use of antimicrobials in human health (EUR-Lex, 2017) and funds AMS initiatives (Box 7, page 17). The Health Emergency Response Authority (HERA)’s mandate to support development of diagnostics and strengthen laboratory and surveillance capacity has the potential to contribute substantially over the next few years.

Table 1: WHO groupings of AMR interventions to improve antibiotic prescribing behaviours in healthcare settings

<table>
<thead>
<tr>
<th>INTERVENTION TYPE</th>
<th>EXAMPLE INTERVENTIONS</th>
</tr>
</thead>
</table>
| Persuasive (education) = strategies that rest on provider education and feedback efforts to induce behaviour change | • Educational meetings (e.g. basics on antibiotic use, case-based discussions, morbidity and mortality, significant event analysis, lectures on specified topics)
• Distribution of and training on educational material (e.g. clinical practice guidelines)
• Using local key opinion leaders/champions to advocate for key messages
• Reminders provided verbally, on paper or electronically
• AMS e-learning resources made available to all personnel
• AMS education as part of undergraduate and continuing education for all healthcare professionals |
| Persuasive (feedback) = strategies that limit opportunities to use antibiotics | • Audit with feedback to prescribers on their prescribing practice
• AMS as a component of ward rounds (e.g. real-time feedback with educational component)
• Patient handover meetings between two shifts with real-time feedback by consultants
• Local consensus processes for changes in antibiotic treatment or surgical prophylaxis |
| Restrictive = strategies that target organizational elements of care | • Formulary restrictions
• Restricted prescribing of identified antibiotics (e.g. expert approval prior to prescription)
• Compulsory order forms for targeted antibiotics
• Automatic stop orders (e.g. after a single dose of surgical prophylaxis)
• Selective susceptibility reporting from the laboratory |
| Structural = often IT interventions | • Rapid laboratory testing made available (such as point-of-care C-reactive protein (CRP) testing)
• Therapeutic drug monitoring |

Source: Adapted from WHO, 2019c.
Strengthening the EU response to prevention and control of Antimicrobial Resistance (AMR)

Box 6: Point-of-care testing: a diagnostic tool to help physicians on the spot

Point-of-care testing encompasses diagnostic tools that can be used where healthcare is provided or near the patient, such as C-reactive protein (CRP) testing. This is increasingly used by many providers aiming to reduce unnecessary AB prescription (Sanders et al., 2008; Falk & Fahey, 2009). The usual tests performed in laboratories often take too long (typically 48–72 hours) to be helpful for immediate prescription, whereas POCT can help the clinicians evaluate in a few minutes the probability of the need for antibiotics (Roos et al., 2019). Even though most infections managed in primary care are from viral origins, it remains particularly challenging for the general practitioner (GP) to discriminate them from bacterial etiologies or to exclude bacterial secondary infection, and consequently to decide if there is a need to prescribe antibiotics (Vicentini et al., 2022). In paediatric settings, the use of POCT in the first line has proved to be efficient in guiding clinical decisions and therefore significantly reducing the prescription and use of antibiotics, although more studies are needed to assess these findings (Vicentini et al., 2022; Brigadoi et al., 2023). In adult patients, POCT has been described as a cost-effective and clinically effective antimicrobial stewardship tool. A Cochrane review of six randomized controlled trials (RCTs) concluded that the use of CRP POCT was associated with a 22% reduction in antibiotic prescribing in adults with acute respiratory tract infections (Aabenhus et al., 2014). Even though a significantly higher reconsultation rate within the 30 days has been shown, the benefits of the technique outweigh this potential harm (Martínez-González et al., 2020).

Source: Provided by Belgian Antibiotic Policy Coordination Committee (BAPCOC).

Strengthening implementation of antimicrobial stewardship programmes requires strong leadership commitment; clear roles and responsibilities; accountability mechanisms; behavioural science approaches; improved diagnostic capacity; and consistent access to antimicrobials. ASPs are complex interventions with varying success of implementation within and between Member States. There is substantial value in using behavioural science approaches to understand which AMS interventions are more effective than others in different settings and contexts (and why that is the case) (Borek et al., 2022). Several multicomponent AMS interventions with behavioural change techniques have resulted in significant reductions in antimicrobial prescribing (Borek et al., 2020). Examples include online communication skills training (Butler et al., 2012; Little et al., 2013); guidelines and Treat Antibiotics Responsibly, Guidance, Education and Tools (TARGET) resources (McNulty et al., 2018); feedback to high prescribers in primary care (Hallsworth et al., 2016); use of interactive booklets for parents/carers of children presenting with respiratory tract infections (Francis et al., 2009); and evidence-based practice protocols for risk classification and management of sore throats (Cox & Jones, 2001).

Strong leadership commitment is required from healthcare managers and leaders to ensure that AMS remains a high-level organization priority, and leadership training courses may help achieve this goal. Because clinicians may resist implementation of ASPs if these are perceived as being externally imposed, implementation may be more sustainable if development and implementation of ASPs are clinician driven, or at the very least incorporate active stakeholder engagement. Developing AMS centres of excellence can facilitate the sharing of good practice examples and the use of accreditation as an additional incentive to improve the quality of AMS standards (British Society for Antimicrobial Chemotherapy, 2023).

A significant barrier to AMS is shortages of essential antibiotics, which can limit the optimal choice of antibiotic. These frequently occur in Member States because of small markets, limited manufacturing capacity and supply-chain issues, all largely predicated by financial constraints (Anderson et al., 2023). Sustainable procurement policies can help address this challenge. The limited uptake of rapid diagnostics can be attributed to high costs, poor awareness and limited integration into clinical guidelines.

From a regulatory perspective, regulations that have been used effectively to reduce AMU in animal health could provide impetus for stronger regulation of AMU in human health. This would require actions by Member States, as oversight of health systems is a competence of Member States rather than the EC. For example, the Health Care Inspectorate (IGZ) in the Kingdom of the Netherlands has a mandate to monitor whether ASPs have been implemented
in each healthcare facility (HAI, 2023). Furthermore, the pharmaceutical industry may influence the prescribing habits of clinicians. There is a role for regulation (i.e. mandatory industry disclosure) and sanctions (i.e. prohibition or restriction) to prevent inappropriate payments or rewards from pharmaceutical companies to clinicians that may influence their prescribing habits (Mitchell et al., 2021; Zarei et al., 2023). Restrictive lists of certain antibiotics, which require prior approval by infectious disease specialists before prescribing by any clinician, can also improve the quality of prescribing (Davey et al., 2017).

2.1.2 Clinical decision support systems for prescribers

With the rise of electronic health records, electronic prescribing, portable devices and other advancements in information technology (IT), significant opportunities have emerged to facilitate the creation of current and robust decision-making tools and guidelines tailored to specific clinical contexts. This could be achieved through the utilization of computerized clinical decision support systems (Rittmann & Stevens, 2019). These systems can simplify access to necessary decision-making data, provide timely reminders and cues during patient interactions, aid in diagnosing and ordering, and alert clinicians to emerging patterns in patient data. Overall, literature shows that CDSSs have a significant impact on different outcomes, notably on the decrease of antibiotic consumption and narrowing the spectrum of antibiotic usage (Rittmann & Stevens, 2019; Hojat et al., 2022). Some evidence suggests that CDSSs have a positive impact on the mortality of patients (Roos et al., 2019). Investing in high-quality health information technology platforms and electronic prescribing are key enablers for sustainable implementation of CDSSs in healthcare settings (Rittmann & Stevens, 2019; Hojat et al., 2022).

If CDSSs are classified as a medical device, then the EMA is responsible for assessing quality, safety and efficacy. Whether a CDSS is classified as a medical device is dependent upon whether it just provides information or whether it is considered to be software that is used for the purpose of treatment and diagnosis of disease (Jones, Thornton & Wyatt, 2021). While this is a grey area, CDSSs are considered a medical device in most cases. National health authorities are responsible for appraisal and evaluation of CDSSs, regulation of CDSS providers and integration of CDSSs into national guidance. Purchasing of CDSSs may be the responsibility of national health authorities or local healthcare organizations.

Supporting implementation of CDSSs requires integration within electronic health records and prescriber software, user-friendly interfaces that minimize alert fatigue, comprehensive data, and investment in strengthening health IT infrastructure. Supporting implementation of CDSSs requires investment in strengthening health IT infrastructure, staff training and ongoing maintenance. If they are to be successfully implemented, it is imperative that CDSSs are user-friendly, minimize alert fatigue and are integrated into electronic health records and prescriber software where possible. For CDSSs to be effective they also need comprehensive data on clinical indications, past medical history, laboratory results and ideally on invasive devices (e.g. central or peripheral intravenous lines and urinary catheters). CDSSs also need a structured process to guarantee the integration of up-to-date guidelines within relevant algorithms. However, privacy concerns and compliance with data protection regulations may present barriers to the implementation of CDSSs and integration into electronic health records. Clinicians may have concerns regarding liability when following CDSSs if there are subsequent medical errors and patient safety incidents.

2.1.3 Regulation and related supervision to prevent falsified and counterfeit antimicrobials

The provision of falsified and counterfeit medicines is a significant challenge in the EU because of access to online pharmaceutics and imports of such products (OECD & EUIP, 2020). Falsified antibiotics can prolong infections and create more potential for AMR to emerge. Counterfeit antibiotics, on the other hand, are made by someone other than the genuine manufacturer, by copying or imitating an original product without authority or rights (and therefore without certainty around quality and safety). The WHO Global Surveillance and Monitoring System for Substandard and Falsified Medical Products has identified several instances of substandard or falsified antibiotics in Europe and internationally (WHO, 2017). The EU Falsified Medicines Directive, adopted in 2011, aims to strengthen the legal framework for ensuring the safety and authenticity of medicines, including antibiotics, by introducing measures to prevent the entry of falsified medicines into the legal supply chain (European Commission, 2024a).

The EMA supports the implementation of the EU falsified medicines directive (2011/62/EU) through several actions, including: unique identifiers and anti-tampering devices on medicines; creation of an EU-wide system to verify authenticity of medicines at point of dispensing; monitoring supply-chain and good distribution practice; and introducing a system of obligatory logos for legally operating online pharmacies (European Commission, 2024a). National regulatory authorities and law enforcement agencies are responsible for conducting inspections and sanctioning actors involved in falsified or counterfeit medicines.

Robust traceability systems across supply chains, enhancing custom controls, inspections of pharmacies, and awareness campaigns are required to combat falsified and counterfeit antimicrobials. Member States need to invest in improving the frequency of inspections of pharmacies and enhance custom controls to prevent illegal importation of counterfeit or falsified antibiotics and other drugs. Developing awareness and educational campaigns to inform the public of the risks involved in purchasing prescription-only medicines from unregulated online pharmacies is crucial. The EMA also needs to provide clear guidance to Member States around which other countries have ‘equivalent’ regulatory frameworks to prevent falsified and counterfeit medicines, to inform procurement decisions on antimicrobials from non-EU countries.
2.1.4 Infection prevention and control programmes

Infection prevention and control plays a crucial role in reducing AMR by implementing measures to limit the spread of resistant pathogens and infections, thus decreasing the need for antimicrobial treatment. The WHO has published guidance on core aspects of IPC that cover eight components: (1) IPC programmes; (2) IPC guidelines; (3) IPC education and training; (4) Surveillance; (5) Multimodal strategies; (6) Monitoring/audit of IPC practices and feedback; (7) Workload, staffing and bed occupancy (acute healthcare facilities only); and (8) Built environment, materials and equipment for IPC at the facility level (acute healthcare facilities only) (WHO, 2016). IPC programmes involve several interventions, such as standard hygiene measures (i.e. hand washing), the isolation of infected patients, active screening of incoming patients, and the prevention of HAIs. The prevention of HAIs requires the implementation of multimodal strategies, including bundles for catheter-associated urinary tract infection (CAUTI), central line-associated bloodstream infection (CLABSI), surgical site infection (SSI), hospital-associated pneumonia (HAP) and ventilator-associated pneumonia (VAP) (Tacconelli et al., 2014). Environmental cleaning is also a key component of IPC programmes (Box 8), with growing evidence on its role in reducing patient colonization with hospital-associated infections and multidrug-resistant microorganisms (Peters et al., 2022). IPC teams typically monitor compliance with protocols and guidelines, and often include specialist nurses and doctors (Zingg et al., 2015).

Box 8: Optimizing environmental cleaning in healthcare facilities to reduce AMR

Interventions to improve environmental cleaning of healthcare facilities involve education and training, local guidelines and processes, and monitoring and evaluation with adenosine triphosphate (ATP) bioluminescence and fluorescent markers (Storr et al., 2017; Browne & Mitchell, 2023). Environmental cleaning of healthcare facilities is known to be a clinically- and cost-effective strategy to reduce AMR (Rice et al., 2023), but more can be done to strengthen its implementation (Dancer, 2023). First, there is an unmet need for evidence-based and universally agreed standards for hard surface cleanliness for different surface types and clinical contexts. Second, guidelines and educational frameworks need to be developed that define adequate staffing for optimal environmental cleaning and their training needs. Third, a systematic monitoring framework needs to be developed to review compliance with universally agreed standards. Finally, and most importantly, the essential role of cleaners in patient safety needs to be promoted and valued by healthcare managers and leadership.

Source: Provided by Belgian Antibiotic Policy Coordination Committee (BAPCOC).

The ECDC conducts country visits, provides technical advice to Member States, and performs surveillance of HAIs and AMR across the EU. Its extended mandate includes monitoring of Member States’ IPC programmes to identify gaps and provide recommendations (ECDC, 2023a). The 2023 EU Council Recommendations on stepping up EU actions to combat AMR call for the EC, in conjunction with the ECDC, to develop IPC guidelines in human health (General Secretariat of the Council, 2023). At the same time, the EU’s Joint Programming Initiative on Antimicrobial Resistance (JPIAMR) plays a crucial role in coordinating research efforts and sharing best practices among Member States. National health authorities are responsible for developing national IPC policies and guidelines, providing funding for IPC programmes and conducting surveillance of HAI and AMR in their respective healthcare systems.

IPC programmes should be aligned with ASPs, and supported by legal and accountability frameworks, as well as monitoring and surveillance with rapid feedback mechanisms.

There are significant synergies between ASPs and IPC programmes, and ideally these initiatives should be aligned at organizational level to leverage the complementary expertise of stewardship and IPC healthcare professionals and to ensure objectives are aligned (Knobloch et al., 2021). Ensuring healthcare providers have appropriate resources to invest in multidisciplinary IPC teams, diagnostic and laboratory capacity, and educational and training initiatives is key. Behaviour science techniques, such as tailored targets (for HAI and AMR rates), educational and awareness initiatives, cues (e.g. signs) placed in workplaces, computerized alert systems, financial incentives and sanctions, and performance feedback and benchmarking are all strategies that can also be used to improve compliance with recommended IPC measures (Haustein et al., 2011; Edwards et al., 2012; Vokes, Bearman & Bazzoli, 2018; Kim et al., 2020; Norman, 2021).

Political leadership that is committed to enabling IPC can play a key role in providing strategic direction and ensuring that IPC remains a high-level priority across healthcare systems (including hospital, primary and long-term care facilities) and broader society (WHO, 2023). The 2023 WHO Global Strategy on IPC emphasizes how sustainable implementation of recommended IPC components can be supported through legal and accountability frameworks, regulations and accreditation systems (WHO, 2023). This also requires monitoring and surveillance systems with rapid feedback mechanisms, and clear roles and responsibilities across the healthcare system to help facilitate accountability mechanisms.

2.1.5 Vaccination to prevent emergence and spread of certain pathogens

Vaccination is a key strategy to limit the development and transmission of AMR through multiple pathways (Table 2, page 20). These go beyond just prevention of infection, but also include reduced infection severity and secondary bacterial infections. Vaccines also have the benefit of being highly specific to their targeted pathogen; this means that they can be developed to target specific strains of a pathogen that are most pathogenic or prone to developing resistance. However, the potential benefit of vaccines to reduce AMR is often underestimated because clinicians and policy-makers sometimes only consider a subset of the pathways by which vaccines can affect antimicrobial use and resistance (Lipsitch & Sber, 2016; Atkins et al., 2018).
The EMA is responsible for assessing the quality, safety and efficacy of vaccines. The ECDC monitors vaccine schedules and coverage across Member States, hosts the ‘European Vaccine Information Portal’ (with the EC and EMA) (European Vaccine Information Portal, 2024) and maintains the ‘Vaccine Monitoring Platform’ (with the EMA) (ECDC, 2023b). The EC (through HERA) also has a mandate to coordinate joint procurement of certain vaccines (i.e. influenza) for Member States when required (European Commission, 2022c). National health authorities are responsible for developing vaccination schedules, procurement and distribution of vaccines, monitoring coverage rates, and conducting public awareness and promotion campaigns.

Vaccination should be integrated within AMR national action plans as a key strategic objective, combined with efforts to address vaccine hesitancy and misinformation.

Vaccination is often not included as a strategic objective in AMR national action plans (van Heuvel et al., 2022). From a regulatory perspective, ensuring that the benefits of vaccines in combating AMR are routinely included in their assessment and appraisal by health technology assessment bodies would help ensure that the value of vaccines is appropriately quantified (Postma et al., 2022). More could also be done to prioritize which pathogens should be the target of R&D of new vaccines, including the implications for AMR. While mapping of the preclinical and clinical pipeline already exists (Frost et al. 2023), prioritization needs to consider evidence on which pathogens may be vulnerable to replacement with other pathogens or non-vaccine serotypes following vaccination and subsequent implications for AMR. Finally, Member States frequently experience shortages of vaccines because of limited suppliers, supply-chain issues, or poor stock management (Filia et al., 2022). Sustainable procurement policies discussed in Table 3 (pages 21–23), could be considered to overcome this challenge.

Table 2: Pathways through which vaccination can reduce AMR

<table>
<thead>
<tr>
<th>PATHWAY</th>
<th>RATIONALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preventing infections by focal pathogens</td>
<td>Vaccines may reduce the incidence of infection by a resistant pathogen. This can occur both through direct protection to those vaccinated, and through indirect protection resulting from reduced exposure to the infection in the unvaccinated (herd immunity).</td>
</tr>
<tr>
<td>Bystander effects</td>
<td>Any vaccines that lead to changes in antibiotic use could potentially have an impact on AMR in organisms not targeted by the vaccine. For example, an effective and widely used vaccine that reduces the number of influenza infections should result in population-wide reductions in antibiotic use.</td>
</tr>
<tr>
<td>Infection severity effects</td>
<td>Vaccines that reduce the risk of symptomatic infection without reducing the risk of carriage/asymptomatic infection can lead to reductions in the proportion of infections which require treatment with antimicrobials.</td>
</tr>
<tr>
<td>Subtype selection effects</td>
<td>Some vaccines may target subtypes of a pathogen population which are more likely to be resistant. As a result, overall resistance may decrease.</td>
</tr>
<tr>
<td>Interspecific effects</td>
<td>Vaccination against one organism could reduce transmission of another, leading to declines in both resistant and sensitive phenotypes. For example, influenza or respiratory syncytial virus (RSV) infections may increase the risk of secondary bacterial infections and patients with certain viral infections may transmit more bacterial pathogens.</td>
</tr>
<tr>
<td>Selective targeting effects</td>
<td>Vaccination could lead to differential effects if targeted to certain population groups. For example, if a resistant strain of a given pathogen transmits preferentially in hospitals, targeting the hospital population with a vaccine could have a greater overall effect on the resistant strain, leading to declines in resistance in both hospital and community.</td>
</tr>
</tbody>
</table>

Source: Adapted from Jit, Anderson & Cooper, 2020.
Table 3: Selected implementation considerations for key AMR interventions in human health

<table>
<thead>
<tr>
<th>INTERVENTION</th>
<th>ROLE FOR EU</th>
<th>ROLE FOR MEMBER STATES</th>
<th>OPERATIONAL CONSIDERATIONS</th>
<th>FINANCIAL CONSIDERATIONS</th>
<th>REGULATORY CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobial stewardship programmes</td>
<td>ECDC conducts surveillance of AMU, conducts country visits and provides training</td>
<td>National health authorities invest in ASPs, develop guidelines and educational programmes, conduct surveillance of AMU and feedback to prescribers, and evaluate stewardship interventions</td>
<td>Centres of excellence can share examples of best practice, and accreditation can create incentives to improve standards</td>
<td>Shortages of essential antibiotics frequently occur because of small markets, limited manufacturing capacity and supply-chain issues</td>
<td>Stronger regulations should be considered to improve accountability for inappropriate AMU and implementation of ASPs</td>
</tr>
<tr>
<td></td>
<td>JPIAMR coordinates research efforts and shares best practices among Member States</td>
<td>Setting specific targets for AMU at regional and organizational levels</td>
<td>Clinician-driven initiatives are often more effective, as clinicians sometimes resist political influence</td>
<td>Uptake of rapid diagnostic tools is influenced by poor awareness, high costs and limited integration into clinical guidelines</td>
<td>Regulations and sanctions to limit the influence of pharmaceutical industry on prescribers may be considered</td>
</tr>
<tr>
<td></td>
<td>EC has produced guidelines on prudent use of antimicrobials in human health (with the ECDC), and fundsAMS initiatives (i.e. DRIVE-AMS)</td>
<td>More targeted interventions for organizations with higher AMU rates</td>
<td>Knowledge transfer needed on ASP best practices across Europe</td>
<td>Investment is needed in multidisciplinary teams and training programmes</td>
<td>Restricted lists, verified by specialists before prescriptions (i.e. prior approval processes), can induce significant local-level changes</td>
</tr>
<tr>
<td></td>
<td>EC supports development of diagnostics, and strengthening laboratory and surveillance capacity</td>
<td></td>
<td>Behavioural science approaches can be used to strengthen implementation (i.e. goal setting, behaviour monitoring, feedback, social support, social comparison, incentives and sanctions)</td>
<td>Privacy concerns and compliance with data protection regulations may present barriers to implementation of CDSSs and integration into electronic health records</td>
<td>Clinicians may have concerns regarding liability when following CDSSs</td>
</tr>
<tr>
<td></td>
<td>EC to fund research in effectiveness of ASP interventions and rapid diagnostic tools</td>
<td></td>
<td>CDSSs need a structured process to guarantee the use of up-to-date guidelines</td>
<td>Clinicians may have concerns regarding liability when following CDSSs</td>
<td></td>
</tr>
<tr>
<td>Clinical decision support systems (CDSS) for prescribers</td>
<td>EC funds R&D of CDSSs (i.e. through initiatives such as Horizon Europe)</td>
<td>Funding for implementation and R&D of CDSSs</td>
<td>CDSSs should be user-friendly, minimize alert fatigue and be integrated into electronic health records and prescriber software</td>
<td>Resources are required to strengthen health IT infrastructure, for staff training, and for ongoing maintenance</td>
<td>Privacy concerns and compliance with data protection regulations may present barriers to implementation of CDSSs and integration into electronic health records</td>
</tr>
<tr>
<td></td>
<td>If classified as a medical device, the EMA is responsible for assessing quality, safety, efficacy of CDSSs (including post-market authorization monitoring of effectiveness)</td>
<td>Appraisal and regulation of CDSSs</td>
<td>CDSSs need comprehensive data regarding clinical indications, past medical history, laboratory results, and from invasive devices (i.e. intravenous lines and urinary catheters)</td>
<td>Clinicians may have concerns regarding liability when following CDSSs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integration of CDSSs into guidelines</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued on next page
Table 3: Selected implementation considerations for key AMR interventions in human health continued

<table>
<thead>
<tr>
<th>INTERVENTION</th>
<th>ROLE FOR EU</th>
<th>ROLE FOR MEMBER STATES</th>
<th>OPERATIONAL CONSIDERATIONS</th>
<th>FINANCIAL CONSIDERATIONS</th>
<th>REGULATORY CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulation and related supervision to prevent falsified and counterfeit antimicrobials</td>
<td>• EC introduced the falsified medicines directive (2011/62/EU)</td>
<td>• National regulatory authorities and law enforcement agencies are responsible for conducting inspections and sanctioning actors involved in falsified or counterfeit medicines</td>
<td>• Public awareness campaigns are essential to discourage the use of falsified antimicrobials</td>
<td>• Ensuring adequate resources for robust traceability systems across supply-chains of medicines, and regular inspections of pharmacies</td>
<td>• Establishing whether non-EU countries have ‘equivalent’ regulatory frameworks to prevent falsified and counterfeit medicines when importing medicines</td>
</tr>
<tr>
<td></td>
<td>• EMA supports the implementation of this directive, including:</td>
<td></td>
<td>• Member States may consider enhancing customs controls and inspections to prevent illegal importation of counterfeit or falsified antibiotics and other drugs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. Unique identifiers and anti-tampering devices on medicines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. EU-wide system to verify authenticity of medicines at point of dispensing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Monitoring supply-chain and good distribution practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Obligatory logos for legally operating online pharmacies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infection prevention and control programmes</td>
<td>• EC to develop IPC guidelines in conjunction with ECDC</td>
<td>• National health authorities develop policies, produce guidelines, enforce financial and legal frameworks, provide funding for IPC programmes, and conduct surveillance of HAIs and AMR across Member States</td>
<td>• IPC applies across the healthcare system (hospital, primary and long-term care), and broader society</td>
<td>• Staffing shortages, and limited laboratory and diagnostic capacity hinder implementation of IPC programmes</td>
<td>• Legal and accountability frameworks, regulations, accreditation systems, financial incentives, targets and public benchmarking can be effective strategies to scale up core components of IPC programmes, reduce HAIs and promote organizational changes</td>
</tr>
<tr>
<td></td>
<td>• ECDC offers technical expertise, provides training, develops guidelines, conducts country visits, and conducts surveillance of HAIs and AMR across Member States</td>
<td></td>
<td>• IPC programmes must have multidisciplinary input, and involve sustained audit and feedback mechanisms to ensure accountability</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• JPIAMR coordinates research efforts and shares best practices among Member States</td>
<td></td>
<td>• IPC activities should coordinate and integrate with other health priorities and programmes, and vice-versa (e.g. patient safety and quality of care, occupational health and safety, health emergencies, biosafety and biosecurity)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EC with ECDC could set specific targets for AMR in each Member State</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EC could support the strengthening of national public health agencies in Member States</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• EC to fund research into effectiveness of IPC measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued on next page
Table 3: Selected implementation considerations for key AMR interventions in human health

<table>
<thead>
<tr>
<th>INTERVENTION</th>
<th>ROLE FOR EU</th>
<th>ROLE FOR MEMBER STATES</th>
<th>OPERATIONAL CONSIDERATIONS</th>
<th>FINANCIAL CONSIDERATIONS</th>
<th>REGULATORY CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccination to prevent emergence and spread of certain pathogens</td>
<td>• EMA assesses quality, safety and efficacy of vaccines; based on this assessment EC grants central market authorization</td>
<td>• National health authorities develop vaccination schedules, procure and distribute vaccines, monitor coverage rates, and conduct public awareness and promotion campaigns</td>
<td>• Essential to include vaccination as a strategic objective within AMR national action plans</td>
<td>• Member States frequently experience shortages of vaccines because of limited suppliers, supply-chain issues or poor stock management</td>
<td>• The benefits of vaccines in combating AMR should be routinely included within assessment and appraisal of vaccines by regulatory and health technology assessment bodies</td>
</tr>
<tr>
<td></td>
<td>• EC coordinates joint procurement of certain vaccines (i.e. influenza) for Member States, and could invest in manufacturing capacity</td>
<td></td>
<td>• Crucial to address vaccine hesitancy and misinformation through public awareness campaigns</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ECDC monitors vaccine schedules and coverage across Member States, hosts the 'European Vaccine Information Portal' (with the EC and EMA), and maintains the 'Vaccine Monitoring Platform' (with the EMA)</td>
<td></td>
<td>• Collaboration with social media influencers to enhance vaccination messages and counter misinformation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• National health authorities develop vaccination schedules, procure and distribute vaccines, monitor coverage rates, and conduct public awareness and promotion campaigns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Essential to include vaccination as a strategic objective within AMR national action plans</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Crucial to address vaccine hesitancy and misinformation through public awareness campaigns</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Collaboration with social media influencers to enhance vaccination messages and counter misinformation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Member States frequently experience shortages of vaccines because of limited suppliers, supply-chain issues or poor stock management</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Reimbursement models can be adapted to ensure financial incentives exist for healthcare providers to comply with vaccination schedules</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• The benefits of vaccines in combating AMR should be routinely included within assessment and appraisal of vaccines by regulatory and health technology assessment bodies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2. Animal health

2.2.1 Regulation and related supervision to promote the prudent use of antimicrobials

Several aspects of the pharmaceutical regulation are used to govern appropriate AMU in animal health in the EU. A significant development was banning the use of antibiotics as growth promoters in animal feed for all EU countries in 2006 (EUR-Lex, 2003a). Regulation 2019/6 on veterinary medicinal products (EUR-Lex, 2018a) includes a wide range of complementary measures to ensure prudent use of antimicrobials, most of which are applicable since January 2022 (Box 9). There has also been a multitude of other actions, and legislation with regard to AMR in bacteria and zoonoses, to prevention and control of diseases (e.g. Directive 2003/99/EC, Commission Implementing Decision (EU) 2020/1729, Regulation 2016/429, Regulation 2020/687 and Regulation 2020/689) (EUR-Lex, 2003b, 2016, 2019, 2020a,b) as well as prudent use (guidelines for the prudent use of antimicrobials in veterinary medicine 215/C, 299/04) (European Union, 2015) and restricted use of antimicrobials (Regulation 2019/4 and Regulation 2019/6), has been put in place at EU level (EUR-Lex, 2018b, 2022).

Box 9: The EU’s veterinary regulation of 2019

Regulation 2019/6 on veterinary medicinal products, also known as the new veterinary regulation (NVR), sets out the rules for the authorization, use and monitoring of veterinary medicinal products in the EU. The legislation came into effect in January 2019, to be applied in all EU Member States from January 2022. Notable provisions on the prudent use of antibiotics include: ban on the preventive (prophylactic) use of antibiotics in groups of animals; ban on the use of antimicrobials to promote growth or increase yield (in addition to the ban of 2006); significant restriction of the use of antimicrobials in groups of animals ahead of expected disease outbreaks (metaphylactic use); clear framework imposing strict conditions for antimicrobial prescriptions; an obligation for Member States to collect data on the sales of veterinary antimicrobials, but also on the use of antimicrobials per animal species. This will allow national authorities and stakeholders to design more targeted measures per sector to reduce AMU in animals to what is strictly necessary.

The European Commission is responsible for introducing pharmaceutical regulation related to AMU in animals (which the European Parliament and Council of the EU subsequently adopt); and the EMA (and in some cases competent authorities from Member States) is responsible for assessment of quality, efficacy and safety of antimicrobials. National authorities in Member States are responsible for enforcing regulations within their territories, and enforcement measures include inspections, penalties for non-compliance and legal actions against those who violate the regulations. Member States are also required to report their data on the volume of sales and use of antimicrobial medicinal products in animals to the EMA (EMA, 2024a), in line with the Veterinary Medicinal Products Regulation (EUR-Lex, 2018a). The EMA then reports this data through the ‘Antimicrobials Sales and Use Platform’ to support the mandatory collection and reporting of data on antimicrobial medicinal products in animals from across the EU (EMA, 2024b). The EFSA, EMA and ECDC also produce joint AMR surveillance reports taking a ‘One Health’ approach (ECDC, EFSA & EMA, 2024).

Strengthened regulation of AMU in animal health could entail sector-specific targets and benchmarking; revenue models that alter direct profits from antimicrobial sales; enhanced conditions on usage of certain broad-spectrum antimicrobials; and aligning summary product characteristics for veterinary antimicrobials across the EU.

A previous review of measures to reduce the need to use antimicrobials in animal husbandry concluded that setting targets and benchmarking could be an effective strategy to reduce AMU (Murphy et al., 2017). The EC will therefore take action to reduce overall EU sales of antimicrobials for farmed animals and in aquaculture by 50% by 2030 (European Commission, 2020a). However, sector-specific guidelines could improve implementation of these targets, reflecting the breadth of food-producing and companion animals. Veterinarians frequently feel obliged to prescribe antimicrobials as they are paid on a fee-for-service basis, and in many EU Member States they make a profit from selling antimicrobials. Payment mechanisms could be adjusted to remove incentives to prescribe antimicrobials and encourage preventative advice (see also below section on biosecurity). This has been used successfully in several Nordic countries to reduce AMU in the animal health sector (Sternberg-Lewerin et al., 2022). Introducing additional conditions on usage of broad-spectrum antibiotics may help promote prudent use, such as registration of usage and justification based on laboratory analysis. For example, legislation was introduced in Belgium in 2016 that imposes these conditions on the use of third- and fourth-generation cephalosporins and fluoroquinolones by veterinarians in food-producing animals and will be applicable to all other animals as of September 2024 (with the exception of intramammary therapy for mastitis) (AMCRA, 2024). This has led to a 75% reduction in the use of these critically important antibiotics (AMCRA, 2021).

Despite EU regulations stating that veterinary medicinal products can only be used in accordance with the terms of their marketing authorization 1, deviations in prescribing practices across Member States and what is listed within Summary of Product Characteristic (SPC) certificates is a source of confusion, hampers efforts to develop national prescribing guidelines, and creates barriers for the circulation of antimicrobials within the EU. A review of SPCs for antimicrobials conducted by the EMA, with an emphasis on the optimal dose and duration to prevent risk of AMR, could be the first step to aligning SPCs for veterinary antimicrobials across the EU. Finally, beyond regulatory efforts, AMS efforts are just as crucial in the animal sector as they are in the human health sector (see Box 10 on page 25).

1 Regulation (EE) 2019/6 of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products states that Veterinary Medicinal Products shall only be used in accordance with the terms of the marketing authorization.
2.2.2 Improved biosecurity to prevent emergence and spread of infection

Improved biosecurity within animal health is listed as a key priority within the 2017 EU One Health Action Plan against AMR (European Commission, 2017) and the 2023 EU Council Recommendations on stepping up EU actions to combat AMR (General Secretariat of the Council, 2023). Two key examples of biosecurity systems include the Biocheck and Farmfit systems (Box 11). Components of biosecurity in animal health include controlled access to facilities, access to clear water, sanitation, quarantine procedures and the management of animal movements. Implementing biosecurity practices is a cost-effective strategy to reduce AMR by preventing disease outbreaks, thereby reducing the need for antimicrobial treatments and their associated expenses (Hofacre et al., 2002). The upfront costs of implementing biosecurity are justified by the long-term economic benefits, making it a crucial component of a comprehensive strategy to address AMR in animal agriculture (Jimenez et al., 2023).

The European Commission can introduce legislation on biosecurity, and produces policies and initiatives to improve it (EUR-Lex, 2016; European Commission, 2020a). One example is the mandatory requirements for biosecurity in aquaculture listed within EU regulation 2020/691 for aquaculture establishments and transporters of aquatic animals (European Commission, 2020b). At the same time, the EFSA provides technical advice on biosecurity measures to Member States. It is important to emphasize that biosecurity measures sit within a broad framework of EU actions that aim to make food systems fair, healthy and environmentally friendly. These actions are summarized within the Farm to Fork strategy, but also include regulations to prevent transmission of animal diseases (i.e. through the

Box 10: Antimicrobial stewardship programmes and clinical decision support systems in veterinary medicine

Antimicrobial stewardship is also a key component of promoting prudent AMU in veterinary medicine (Lloyd & Page, 2018). Implementation of ASPs in animal health shares many similar implementation enablers to ASPs in human health, including strong leadership commitment combined with clear roles, responsibilities and accountability mechanisms, behavioural science approaches (i.e. goal setting, behaviour monitoring, feedback, social support, social comparison, incentives and sanctions), improved diagnostic capacity, consistent access to antimicrobials, and integration with IPC programmes (Magalhães-Sant’Ana et al., 2017; Hardefeldt et al., 2018; Golding, Ogden & Higgins, 2019). Education and awareness campaigns are necessary to achieve sustained behaviour change (Vercelli et al., 2022). CDSSs for prescribers also have a role in animal health, as they can play an important role in the quality of the sales and use data for veterinary antimicrobials (Fox et al., 2021). Supporting implementation requires integration within prescriber software, user-friendly interfaces that minimize registration fatigue, and investment in strengthening veterinary IT infrastructure.

Importantly, veterinarians need to be included as an equal partner in the One Health approach. They play an important role in the battle against AMR and are rightly proud of what has already been achieved. Increased acknowledgment of their efforts and sustainable support are needed to ensure continued motivation and cooperation.

Box 11: Biocheck and FarmFit systems

Biocheck.UGent is a risk-based scoring system, which quantifies the level (of on-farm biosecurity) (Lloyd, 2017). It is not focused on a specific disease, but facilitates an assessment of biosecurity levels in general and on those aspects that are common to the transmission of many different types of infectious disease. Biocheck surveys are divided into several subcategories for internal and external biosecurity, and encapsulate five principles: 1) Separation of high and low risk animals and environments; 2) Reduction of the general infection pressure; 3) Taking into account the risk of each transmission route, as not all are equally important; 4) Risk is a combination of probability of transmission and frequency of occurrence of transmission routes; and 5) Larger animal groups and thus larger farms pose, in general, higher risks for disease outbreaks and spread (Dewulf et al., 2018). Biocheck has been used in over 100 countries (Biocheck.UGent, undated), allowing benchmarking and progress tracking of biosecurity in multiple species globally.

FarmFit is a tool developed by the animal health associations DGZ (Animal Health Care Flanders) and ARSIA (Association Régionale de Santé et d’Identification Animales). It serves as a platform for both veterinarians and farmers to optimize herd health management and to register herd visits and action plans, covering essential aspects of animal health, disease prevention and biosecurity (Farmfit, undated). One of the elements integrated into Farmfit is a biosecurity evaluation, based on the Biocheck.UGent questionnaires. By using the biosecurity module in Farmfit, veterinarians can efficiently assess biosecurity on poultry and pig farms. The biosecurity evaluations facilitated by Farmfit also align with mandatory requirements for biosecurity outlined within the Belgian frameworks of avian influenza legislation (FASFC, 2021) and African Swine Fever legislation (FASFC, undated). Additionally, veterinarians and farmers receive tailored recommendations and actions through the tool, aimed at enhancing the biosecurity status of the farm. This highlights one of Farmfit’s main objectives, which is to foster collaboration between farmers and veterinarians. While a comprehensive evaluation of the data is still in progress, initial unpublished findings from Belgium indicate an improvement of the biosecurity status of pig and poultry farms.

Dr Nele Caeekebeke, Professor Jeroen Dewulf and Mr Willem Van Praet kindly provided information on the Biocheck and FarmFit initiatives that was used to develop this box.

EU Animal Health Law (EUR-Lex, 2016), promote animal welfare (i.e. Council Directive 98/58/EC concerning the protection of animals kept for animal purposes) (EUR-Lex, 1998) and protect animal welfare. Member States are responsible for enforcing EU regulation through farm inspections, educational initiatives and surveillance of AMR. National authorities also develop their own policies and legislation on biosecurity and conduct risk assessments of potential threats.

Payment mechanisms need to be designed to reward veterinarians for giving preventative and biosecurity advice, and the cost benefits of biosecurity need to be routinely reported and emphasized to farmers. Implementation of biosecurity measures is often perceived as costly for farmers. Therefore, the benefit-cost ratio of biosecurity needs to be routinely reported and emphasized to farmers to encourage implementation (Dewulf et al., 2020). Overcoming resistance to change also requires investment in education and training, capacity building, and coordination among stakeholders. As previously mentioned, veterinarians often feel they cannot charge for giving preventative advice in agricultural settings. Therefore,
contracts must be (re)designed to ensure that prophylactic advice from veterinarians is appropriately rewarded. One example of such contracts are the Veterinary Advisory Service Contracts (VASC) in Denmark, which focus on advice and prevention of disease rather than treatment, in order to optimize the use of antimicrobials (DVFA, 2024). In 2010, it became mandatory for owners of large herds of cattle and pigs, and for mink farm owners, to sign a VASC. On the other hand, from a regulatory perspective, sanctioning farms can be difficult, as defining the boundaries of ‘acceptable’ biosecurity standards is challenging even with the development of checklists such as BioCheck (Box 11, page 25). Therefore, greater clarity in this respect would help improve standards and compliance with biosecurity measures.

2.2.3 Vaccination to prevent emergence and spread of certain pathogens

Similar to human health, vaccines are used extensively in animal health for the prevention of infectious diseases and therefore to reduce the need for antimicrobials. Vaccines are often used in livestock as part of a broader strategy that includes good biosecurity practices and responsible AMU. Several studies have emphasized how vaccination is a cost-effective strategy to prevent infectious diseases, reduce AMU and improve livestock productivity (Longworth, Mourits & Saatkamp, 2014; Tang et al., 2022; da Silva Giacomini et al., 2023; Jimenez et al., 2023). However, the availability of veterinary vaccines varies significantly across Member States in the EU (Videnova & Mackay, 2012). Moreover, there are many diseases frequently occurring within animals for which there are no vaccines currently available (Videnova & Mackay, 2012). To address such needs, Regulation (EU) 2019/6 derogations allow, under some circumstances, the use of vaccines not authorized within the EU. It also includes regulatory incentives for the development of new vaccines (EUR-Lex, 2018a).

The competent authorities of the Member States and EMA are responsible for the evaluation of quality, effectiveness and safety of vaccines used in animals. The Directorate-General for Research and Innovation has the authority to finance the R&D of new vaccines. National authorities are responsible for developing vaccination guidelines, establishing educational standards, funding R&D, and surveillance of the sale and administration of vaccines.

Investment is needed to stimulate R&D of novel vaccines in animal health to reduce AMR and transmission to humans, with an emphasis on unmet need.

There are many animal diseases for which no vaccine exists, or vaccines have limited efficacy. In particular, there is low availability of effective veterinary vaccines for use in aquatic animals (Du et al., 2022). There is also general low availability of effective vaccines for minor use or minor species (MUMS) with limited markets (EMA, 2017a). Driving this issue is a lack of incentives to encourage the R&D of new vaccines for animal health. Market unattractiveness for veterinary vaccines in many species will mean that significant public subsidization of R&D will be required to supply more effective vaccines. However, a review of where the significant gaps are in terms of unmet need for vaccines to reduce AMR and transmission to humans would help target when and where public investment is needed the most. From a regulatory perspective, the industry has proposed recommendations to optimize regulatory requirements to improve availability of new vaccines, including simplifying mutual recognition procedure (MRP), utilizing serology data as surrogate markers, improving pharmacovigilance data utilization, and aligning regulatory requirements with those of the United States of America (USA) (EMA, 2017b). However, the implications of these recommendations for ensuring the quality and safety of vaccines for use in animals need to be considered.

2.2.4 Food safety compliance programmes

Food safety compliance programmes refer to multicomponent frameworks developed by EU institutions and competent authorities in Member States to limit the presence and transmission of pathogens through food supply chains and to consumers. This is important as resistant bacteria have been detected in various food products, including meat, dairy and vegetables (Van Boeckel et al., 2015), and contaminated food can serve as a direct source of resistant strains for consumers. Food safety compliance programmes typically include regulations, guidelines, inspections and audits that aim to limit the infection or contamination of animals, plants and products during production, processing and distribution, and to foster adherence to recommended withdrawal periods2 for antimicrobials to ensure that treated animals do not enter the food chain until the residues of the drugs have sufficiently cleared (EUR-Lex, 2003a).

The European Commission is responsible for introducing legislation on food safety across food supply chains and developing EU policies related to food safety (e.g. the Farm to Fork strategy and the EU hygiene package) (European Commission, 2020; Food Safety Authority of Ireland, undated). The EFSA provides technical advice and communicates risks to food safety to Member States; collects data on chemical (including antimicrobial) residues, zoonoses and food safety criteria parameters in food and process hygiene criteria parameters in food processing; and conducts risk assessments across the food supply chain. National food safety authorities enforce EU legislation through actions such as conducting inspections to monitor standards and compliance with regulations; undertaking risk assessment to identify hazards; providing education and training; and performing surveillance on chemical residues, zoonoses and food safety criteria parameters in food and on process hygiene criteria parameters in food processing.

2 Withdrawal periods are the time that must elapse between the last administration of a veterinary medicine and the slaughter or production of food from that animal, to ensure that the food does not contain levels of the medicine that exceed the maximum residue limit. The withdrawal period is set during regulatory authorization of veterinary medicinal products.
Food safety messages, such as thorough cooking and good hygiene practices, need to be integrated into AMR awareness campaigns, and surveillance of AMR in food needs to be strengthened.

Several barriers exist to sustainable implementation of food safety programmes. The complexity of regulatory requirements can sometimes be challenging for food business operators (FBOs) to navigate, including differences between EU and non-EU regulations (Pederson & Hernandez, 2014). Compliance with food safety standards can be costly for FBOs (particularly SMEs), including investment in training, equipment and regulatory fees (Villamiel & Méndez-Albiñana, 2022). The large number of actors involved in food supply chains also creates challenges in traceability, transparency and accountability of food safety standards. Integrating a food safety component into public AMR awareness campaigns can be a useful opportunity to promote food safety. Key messages could include thorough cooking to destroy bacteria and applying good hygiene practices at all stages of the food chain to reduce the risk of contamination and spreading of bacteria potentially carrying AMR genes to other foods. While surveillance of AMR in fresh meat at the retail level is already included within EU regulations (EUR-Lex, 2020a), strengthened and more frequent surveillance of AMR in food in more downstream FBOs, such as retailers, may help build a more comprehensive understanding of AMR in food products, as the majority of surveillance currently takes place in large-scale FBOs, such as abattoirs (EFSA Panel on Biological Hazards (BIOHAZ) et al., 2022). Finally, more research is needed to address gaps in our understanding of how various interventions impact AMR and subsequent food safety, such as different cleaning and disinfection protocols, approaches to animal transportation, mechanical versus manual catching/loading of animals, and the effect of type and amount of bedding (EFSA Panel on Biological Hazards (BIOHAZ) et al., 2022).
Table 4: Selected implementation considerations for key AMR interventions in animal health

<table>
<thead>
<tr>
<th>INTERVENTION</th>
<th>ROLE FOR EU</th>
<th>ROLE FOR MEMBER STATES</th>
<th>OPERATIONAL CONSIDERATIONS</th>
<th>FINANCIAL CONSIDERATIONS</th>
<th>REGULATORY CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulation and related supervision to promote prudent antimicrobial use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• EC introduces legislation for prudent AMU and surveillance</td>
<td>• National authorities enforce EU regulation on appropriate use, develop national guidelines on AMU, outline educational standards, conduct surveillance of AMU and AMR, and can set targets at regional and farm levels</td>
<td>• Targets and benchmarking to reduce antimicrobials can be effective, but need to be sector- and animal-specific, and applicable to both internal consumption and exports</td>
<td>• Revenue models that alter direct profits from antimicrobial sales can remove potential incentives for veterinarians to prescribe antimicrobials, i.e. by moving into service contracts that reward preventative advice</td>
<td>• Despite regulation stating that veterinary medicinal products must be used within the terms of their marketing authorization, prescribing practices sometimes deviate from SPCs in violation of regulations, creating challenges when designing guidelines; therefore, SPCs could be reviewed by the EMA</td>
<td></td>
</tr>
<tr>
<td>• EC sets targets for AMU across Europe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• EMA is responsible for assessment of quality, efficacy and safety of antimicrobials, and surveillance of AMU through the 'Antimicrobials Sales and Use Platform'</td>
<td>• National legislators are responsible for transposing EU legislation into national law</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• EFSA, EMA and ECDC produce joint AMR surveillance report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved biosecurity to prevent emergence and spread of infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• EC introduces legislation on animal welfare and biosecurity to prevent emergence and spread of infection</td>
<td>• National authorities develop policies and legislation on biosecurity, enforce EU regulation, undertake farm inspections, conduct risk assessments of potential threats, outline educational standards, and perform surveillance of AMR</td>
<td>• Effective biosecurity requires robust surveillance systems and access to biosecurity equipment</td>
<td>• Implementing biosecurity measures is often costly for farmers and they must be convinced of cost-benefits</td>
<td>• Sanctioning farms can be difficult as defining boundaries of ‘acceptable’ biosecurity standards is challenging</td>
<td></td>
</tr>
<tr>
<td>• EC produces policies and initiatives to improve biosecurity (i.e. the Farm to Fork strategy)</td>
<td>• Overcoming resistance to change – requires education and training, capacity building and coordination among stakeholders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• EFSA provides technical advice on biosecurity measures to Member States</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

continued on next page
Table 4: Selected implementation considerations for key AMR interventions in animal health

<table>
<thead>
<tr>
<th>INTERVENTION</th>
<th>ROLE FOR EU</th>
<th>ROLE FOR MEMBER STATES</th>
<th>OPERATIONAL CONSIDERATIONS</th>
<th>FINANCIAL CONSIDERATIONS</th>
<th>REGULATORY CONSIDERATIONS</th>
</tr>
</thead>
</table>
| Vaccination to prevent emergence and spread of certain pathogens | • EMA is responsible for assessment of quality, efficacy and safety of vaccines (although in some cases competent authorities in member states also undertake these functions)
• EC can fund research and development of new vaccines | • National authorities, develop vaccination guidelines, outline educational standards, fund research and development, and conduct surveillance of vaccination sales and administration | • Shortages of vaccines are commonplace, and hinder implementation
• Efficacy of vaccines is limited for certain indications or there are no vaccines for certain diseases | • Lack of incentives to stimulate research and development of novel vaccines in animal health
• Vaccines are typically more expensive than antimicrobials | • Industry has suggested recommendations to improve availability of new vaccines, such as simplification of MRPs, use of serology data as surrogate markers, better use of pharmacovigilance data, and alignment of regulatory requirements with USA regulators |
| Food safety compliance programmes | • EC introduces legislation on managing food safety risks across supply chains
• EFSA provides technical advice to Member States on food safety, collects data on chemical (including antimicrobial) residues, zoonotic agents and food safety criteria in food, and conducts risk assessments across supply chains | • National food safety authorities enforce legislation using sanctions, conduct risks assessment to identify hazards, conduct inspections to enforce standards, providing education and training, and perform surveillance on chemical residues, zoonoses and food safety criteria in food | • Having multiple actors involved in food supply chains creates challenges in traceability, transparency and accountability
• Integrating food safety advice into AMR awareness campaigns can promote One Health approaches | • Compliance with food safety standards can be costly for FBOs (particularly SMEs), including investment in training, equipment and regulatory fees | • Complexity of regulatory requirements can sometimes be challenging for FBOs to navigate, including differences between EU and non-EU regulations |

2.3. Environmental health

2.3.1 Optimizing wastewater treatment to minimize spread of AMR

Wastewater treatment plants provide opportunities for bacteria, antibiotics and ARGs from a variety of different sources, such as hospitals, sewage, agriculture and industrial sites, to interact (Sambaza & Naicker, 2023). This can promote the development and further dissemination of AMR into waterways and the environment. However, there are also opportunities to implement improvements in wastewater treatment facilities that can limit the dissemination of AMR and ARGs. Approaches that have been explored to date include chlorination, ozonation, ferrate ultrasonic treatment, ultraviolet radiation, electrochemical technology and membrane technology (Amin, Hashemi & Bovini, 2013). Chlorination is a commonly used approach, but there is some evidence that disinfection by-products from this technique may further promote the development of ARGs (Li & Gu, 2019). Many of these techniques have been shown to be effective but there is no clear consensus regarding which is the most effective or sustainable approach to reducing resistant bacteria or ARGs in wastewater (Pandey et al., 2023).

The European Commission proposes legislation on wastewater treatment (to be adopted by the Parliament and the Council), and the European Environment Agency provides related scientific advice (Council of the EU and the European Council, 2024a). A revision of the EU’s Urban Wastewater Treatment Directive is underway (political agreement was reached in March 2024) (Council of the EU and the European Council, 2024b). National environmental agencies enforce legislation on wastewater treatment, conduct inspections, monitor antimicrobial residues in water, and provide education and training. The EU has a relatively strong regulatory framework for wastewater treatment in relation to removal of organic matter and chemicals, although it is important to note that there is no legal obligation in the EU to monitor and remove antimicrobial residues or ARGs at present (EEA, 2022).

Investment in research and consensus building is required to develop EU-wide regulations and standards on the improvements in wastewater treatment facilities necessary to reduce AMR.

Further research is crucial to fully understand the role of the environment as a pool and driver of AMR (groundwaters and surface waters, wastewater, and agricultural soils), with several projects underway (Box 12). While some ‘safe’ concentration targets for antimicrobials have been identified in the scientific literature (Tell et al., 2019), there remains a lack of consensus among academics and policy-makers as to whether these targets should be implemented. While several countries are experimenting with different innovations in wastewater treatment to reduce AMR (Yu K-F et al., 2023; WISE-Freshwater, 2024), these need to be systematically evaluated and monitored. From a financial perspective, compliance with additional wastewater regulations may require investment in treatment technologies, process modifications, or environmental monitoring programmes to meet standards. Depending upon how wastewater treatment facilities are financed in each Member State, the costs associated with these investments may be passed onto the public through increased utility bills. Therefore, a strong evidence base is necessary before new wastewater treatment requirements can be mandated and implemented.

Box 12: Research projects to understand spread of AMR in the environment in Belgium

In addition to the routine or prospective monitoring of antimicrobials in surface and ground water, several research projects have been launched to study AMR in the environment. For instance, ISSeP, a Walloon research centre, has raised awareness on the role of surface water in spreading AMR in the environment. In 2019 and 2020, the Antibiobug 1 project revealed the presence of antimicrobial-resistant E. coli in all of its 24 sampling points in the Ourthe, Amblève and Meuse basins (Crettels et al., 2022). In 2021, a follow-up project (Antibiobug 2) was launched to assess the rates of AMR of E. coli in bathing waters (BELMAP, 2023).

Sciensano, a federal research institute that provides support for public health policy in Belgium, is also investigating how AMR can develop and spread in the environment, through pilot studies. These include gathering data on Klebsiella pneumoniae strains and their resistance via the screening of wastewater samples over time and space (Sciensano, undated), and taking samples from two wastewater treatment plants in Belgium twice a week to test for the presence of a selection of eight ARGs. There are also upcoming plans to monitor the prevalence of multidrug-resistant organisms (MDROs) in nursing homes, including examining wastewater from these facilities to evaluate if this can serve as a measure of the prevalence of MDROs among residents.

2.3.2 Limiting dissemination from the pharmaceutical industry

Discharge effluent from the pharmaceutical industry is responsible for dissemination of high concentrations of different antibiotics and ARGs (Xue et al., 2022) as well as active pharmaceutical ingredients that can promote the emergence and increase of AMR (Larsson, 2014). This has received significant attention internationally, and the AMR Industry Alliance has produced recommended predicted no-effect concentrations (PNECs) for discharge effluents from pharmaceutical manufacturers (Vestel et al., 2022). However, in the absence of any standardized monitoring, the implementation of these recommended PNECs has predominantly relied on voluntary agreements with the pharmaceutical industry to report data on their facilities and suppliers (Boston Consulting Group & Wellcome, 2022).

The EC introduces legislation on good manufacturing practice (GMP) for medicines and active substances3, including limiting dissemination of chemicals to the environment (EUR-Lex, 2018a; European Commission, 2024b). The EC’s recently proposed revisions to EU pharmaceutical legislation include strengthening

3 An ‘active substance’ means any substance or mixture of substances intended to be used in the manufacture of a medicinal product that, when used in its production, becomes an active ingredient of that product.
environmental risk assessments (ERA)\(^4\) during pharmaceutical manufacturing processes (European Commission, 2024c). The EMA provides technical advice on GMPs and hosts the ‘GMP Inspectors Working Group’, which aims to harmonize GMP activities at EU level (EMA, 2024c). National inspectorates monitor compliance with GMP regulations in pharmaceutical companies through inspections, national guidelines, education and training, and certification.

Current concentration targets for antimicrobials in waste effluent from the pharmaceutical industry are voluntary, and mandating maximum concentration targets at the EU-level may improve compliance and consistency of implementation.

Mandating maximum concentration targets for antimicrobials in discharge effluent from the pharmaceutical industry could help improve compliance and consistency of implementation. This would require developing a regulatory framework with guidance on recommended monitoring processes and sanctions. Several implementation considerations need to be navigated to successfully design such a policy. There is potential that consumers and health systems may bear the cost burden of implementing stricter manufacturing standards, and this may create challenges in securing public support for such a policy. Even if requirements to comply with mandated concentration targets for antimicrobials in waste effluent are incorporated into procurement processes, it is also challenging to monitor and enforce these regulations in non-EU manufacturers. There is also the possibility that new EU regulations on pharmaceutical production may exacerbate shortages for generic medication if implementing these regulations is responsible for significant additional costs or delays in manufacturing processes. Despite these trade-offs, it is important that the EU institutions consider options to regulate antimicrobial concentrations in discharge effluents from the pharmaceutical industry to protect the environment and limit the potential for further spread of AMR.

2.3.3 Improving waste management in agricultural production

It is estimated that approximately 75% of antibiotics are not absorbed by animals and are excreted in waste (Chee-Sanford et al., 2009), and disposal of agricultural waste can contribute to the dissemination of antimicrobial residues and resistant bacteria into the environment. As a result, there has been increasing attention to improving waste management in agricultural settings as a strategy to reduce AMR. Interventions include controlling runoff from agricultural areas to water bodies (Chee-Sanford et al., 2009), composting and anaerobic digestion techniques for manure management that reduce antimicrobial residues (Katada et al., 2021; Zalewska et al., 2021), and proper disposal of antimicrobial-contaminated waste. Most importantly, sustainable farming approaches are needed that limit reliance on antimicrobials, and therefore excretion in waste, including improved biosecurity and husbandry practices, rotational cropping and vaccination, as discussed in previous sections (Van Boeckel et al., 2015).

The EC introduces legislation on waste management and sustainable farming, and provides some funding for initiatives (e.g., through Common Agricultural Policy and Rural Development Programmes) (Duquennoi & Martinez, 2022). National authorities enforce regulations on waste management, conduct inspections and issue permits, provide technical assistance, and collect data on waste generation and environmental impacts.

Improvements in agricultural waste management would have multiple benefits including reducing the dissemination of AMR in the environment and promoting sustainable soil management practices, although more evidence is needed on acceptable concentration levels of antimicrobials.

Approaches to the treatment of manure (i.e., composting) vary across Member States because of diverse agricultural practices, limited monitoring and enforcement capacity, and lack of awareness and education (European Court of Auditors, 2023). Barriers to implementation of stricter regulations on agricultural waste management include the perception that this would increase costs for farmers, despite the fact that interventions such as treatment of manure that may reduce AMR can also promote sustainable soil management and would promote long-term food security in the EU and increase long-term yields for farmers (European Court of Auditors, 2023). This means that awareness raising discussed in previous sections could incorporate clear communication on these trade-offs as well. While it is known that several agricultural waste management approaches can limit the dissemination of antimicrobial residues and genes in the environment (Van Epps & Blaney, 2016; Keenum et al., 2021; Tang et al., 2023; Zalewska et al., 2023), there is currently no consensus from the scientific community on acceptable antimicrobial residue concentration levels in agriculture waste to minimize dissemination in the environment and potential transmission to humans and animals. Once established, this would help provide the rationale for stricter regulations on waste management in agricultural production.

\(^4\) The ‘environmental risk assessment (ERA)’ means the evaluation of risks to the environment, or risks to public health, posed by the release of the medicinal product in the environment from the use and disposal of the medicinal product and the identification of risk prevention, limitation and mitigation measures. For medicinal products with an antimicrobial mode of action, the ERA also encompasses an evaluation of the risk for AMR selection in the environment due to the manufacturing, use and disposal of that medicinal product.
Table 5: Selected implementation considerations for key AMR interventions in environmental health

<table>
<thead>
<tr>
<th>INTERVENTION</th>
<th>ROLE FOR EU</th>
<th>ROLE FOR MEMBER STATES</th>
<th>OPERATIONAL CONSIDERATIONS</th>
<th>FINANCIAL CONSIDERATIONS</th>
<th>REGULATORY CONSIDERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental health</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimizing wastewater treatment to minimize spread of AMR</td>
<td>• EC introduces legislation on wastewater treatment (such as the Urban Wastewater Treatment Directive)</td>
<td>• National environmental agencies are responsible for enforcing legislation on wastewater treatment, conducting inspections, monitoring antimicrobial residues in water, and providing education and training</td>
<td>• Innovations in wastewater treatment to reduce AMR need to be evaluated and monitored</td>
<td>• Compliance with wastewater regulations may require investments in additional treatment technologies, process modifications, or environmental monitoring programmes to meet standards; these costs may increase utility bills</td>
<td>• Lack of consensus regarding which residues and concentrations should be monitored to minimize dissemination of AMR in the environment creates challenges in defining standards and developing regulations</td>
</tr>
<tr>
<td></td>
<td>• EEA provides scientific advice on wastewater treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limiting dissemination from the pharmaceutical industry</td>
<td>• EC introduces legislation on GMP, including limiting dissemination of chemicals to environment</td>
<td>• National inspectoates monitor compliance with GMP regulations in pharmaceutical companies through inspections, national guidelines, education and training, and certification</td>
<td>• Challenges in regulating non-EU manufacturers and the global impact of potential new EU regulations on pharmaceutical production (including exacerbating shortages)</td>
<td>• Consumers may bear the cost burden of implementing stricter manufacturing standards related to antimicrobial concentrations in waste effluent</td>
<td>• The current concentration targets for antimicrobials in waste effluent have been developed by industry and are subject to voluntary agreements</td>
</tr>
<tr>
<td></td>
<td>• EMA provides technical advice on GMPs and hosts the ‘GMP Inspectors Working Group’, which aims to harmonize GMP activities at EU level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improving waste management in agricultural production</td>
<td>• EC introdues legislation on waste management and sustainable farming, and provides some funding for initiatives (ie. through Common Agricultural Policy and Rural Development Programmes)</td>
<td>• National authorities enforce regulations on waste management, conduct inspections and issue permits, provide technical assistance, and collect data on waste generation and environmental impacts</td>
<td>• Implementation of standards for treatment of manure (i.e. composting) varies across Member States because of diverse agricultural practices, limited monitoring and enforcement capacity, and lack of awareness and education</td>
<td>• Perception that stricter regulations on agricultural waste management may increase costs for farmers</td>
<td>• There is no consensus on acceptable antimicrobial residue concentration levels in waste to minimize dissemination in the environment and potential transmission to humans and animals</td>
</tr>
</tbody>
</table>

2.4 Antimicrobial innovation and access

Policy interventions to support sustainable innovation and access to effective antibiotics in the EU and relevant implementation considerations have been comprehensively reviewed within recent European Observatory on Health Systems and Policies publications produced during the 2023 Swedish Presidency of the Council of the EU (Anderson, Panteli & Mossialos, 2023; Anderson et al., 2023). Key findings from this work that complement the previous sections of this policy brief are summarized below.

2.4.1 Ensuring consistent access to essential antimicrobials

Several policy interventions are required to secure consistent access to essential antimicrobials (Table 6). Overcoming shortages of antimicrobials will require addressing financial unattractiveness, broadening suppliers, investment in manufacturing capacity, and maintaining consistent production. Employing innovative measures, such as group purchasing and subscription models, can ensure that contracts are commercially viable and promote market stability. However, challenges arise from the limited number of producers and unpredictable demand, with much production based outside the EU. Another solution entails developing a European pharmaceutical database, which would pinpoint all the players, optimizing risk management and offering alternative sourcing avenues during shortages. Coordination between EU and national strategies and diversifying stockpiles are also key. In conclusion, a multifaceted approach that includes regulatory reforms, production strategy shifts and robust data systems is crucial for a resilient antimicrobial supply chain.

2.4.2 Stimulating research and development of novel antimicrobials

To advance antimicrobial R&D, a comprehensive incentive framework is needed (Figure 3, page 34). This framework should prioritize public health by addressing pressing medical needs, promoting responsible AMU, enhancing patient access, and preserving environmental integrity (Anderson et al., 2023). On the commercial side, enhancing returns from innovative antimicrobials and ensuring that SMEs thrive in the market is essential. Successful deployment of these incentives also requires strategic considerations about their magnitude, timing and governance, and a commitment to international collaboration.

More investment in push incentives, such as direct grants, is crucial throughout all R&D stages, especially during the preclinical phase when many antimicrobial developers struggle to resource funding to continue research and development. This helps in navigating the difficult transitions from early discovery to preclinical research, and from preclinical to early clinical research. While some entities (such as the Combating Antibiotic Resistant Bacteria Biopharmaceutical Accelerator (CARB-X) and the Global Antibiotic Research and Development Partnership (GARDP)) already aid in various R&D stages, there is an urgent need for more financial backing from international and national donors to increase investment.

Pull incentives, such as financial rewards linked to R&D results, reimbursement reforms and regulatory changes, are also needed to create viable markets for antimicrobials. Several options are currently being proposed by different EU actors, including subscription payments, milestone

Table 6: Policy actions to secure sustainable access to antimicrobials

<table>
<thead>
<tr>
<th>POLICY DOMAIN</th>
<th>POLICY ACTION</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procurement</td>
<td>Joint procurement</td>
<td>The practice of multiple buyers (such as multiple countries) collaborating to collectively publish a single tender for a drug. This can have several advantages, including enhancing transparency through better information sharing, strengthening bargaining power, and mitigating overly high transaction costs by pooling skills, capacities and negotiations.</td>
</tr>
<tr>
<td></td>
<td>Delinking revenues from sales volumes</td>
<td>Payments for antimicrobials based on an ongoing and guaranteed revenue, irrespective of sales volumes, which removes incentives to oversell antimicrobials (e.g. annual revenue guarantees).</td>
</tr>
<tr>
<td>Mapping and stockpiling products</td>
<td>Mapping of available products</td>
<td>Identifying distribution of available stockpiles of antimicrobials, e.g. across different countries.</td>
</tr>
<tr>
<td></td>
<td>Physical stockpiling</td>
<td>Physical stockpiles of medications procured and stored using public funds.</td>
</tr>
<tr>
<td></td>
<td>Virtual stockpiling</td>
<td>A virtual database on needs and deployable stocks of antimicrobials in each country, to facilitate the voluntary exchange of available supplies to meet surges in demand.</td>
</tr>
<tr>
<td>Optimizing manufacturing</td>
<td>Production capacity mapping</td>
<td>Identifying distribution of suppliers capable of producing antimicrobials or their precursors (such as active pharmaceutical ingredients (APIs), and their ability to increase output if required.</td>
</tr>
<tr>
<td></td>
<td>Capital investment in manufacturing capacity</td>
<td>Investment in diversification of global manufacturing capacity, which is currently heavily concentrated in China and India.</td>
</tr>
</tbody>
</table>

Source: Adapted from Anderson, Panteli & Mossialos, 2023.
payments, market entry rewards and transferable exclusivity extension vouchers. Subscription payments stand out as an effective means to maintain the sustainability of antimicrobials and secure improved access (Anderson & Mossialos, 2020). Moreover, these incentives can be integrated with others, including market entry rewards. However, challenges exist when coordinating the implementation of subscription payments for antimicrobials across Member States. Transferable exclusivity extensions may be relatively easier to implement (Anderson, Wouters & Mossialos, 2023) but uncertainty regarding their financial impact and effectiveness has created concerns among Member States who have opposed their implementation (McDonnell, 2022; Årdal C et al., 2024). Lastly, for SMEs, milestone payments can be a particularly useful incentive, granting them the financial backing they need during pivotal moments in their R&D journey.
3. Conclusions

AMR is a significant public health threat, with multiple drivers in different sectors. However, while policy discussions about the need to address it have been ongoing for years, observed progress towards national and international targets is variable and generally lagging behind. This clearly shows that there needs to be a change of perspective in how the AMR response is approached, with concerted intersectoral and multilevel action that focuses on strategies that have been shown to be effective. Recent developments at the EU and Member State levels are encouraging, but their success greatly depends on how they are taken forward.

It is essential that policy-makers at different levels recognize the need to take strong action, prioritize strategies that work, and consider how best to implement them in each setting. Adopting a One Health approach is a prerequisite for addressing AMR, but given the many levels of necessary action, the multiple actors concerned and the siloed nature of many regulatory and operational provisions, incentives are difficult to align and the implementation of successful interventions is challenging. To support these objectives, this policy brief identified 12 key strategies spanning the human, animal and environmental sectors, along with enablers and barriers for their implementation.

A key common enabler that emerged across strategies and sectors is strong leadership commitment. This implies that understanding the political economy around AMR action is crucial for high-level policy-makers at the European and national levels. Those responsible for setting the framework for (joint) targets and standards, and drawing up implementation strategies (e.g. in the form of updated national action plans), should have a clear understanding of the stakeholders involved and how they need to be engaged in the process to ensure they are properly supported. This should increase the likelihood of sustained implementation and meaningful change. However, it also requires mobilization across various government departments to ensure that investment and support are really channeled where they are most needed, and that implemented measures are coherent and enable concerted action.

Another fundamental enabler for the successful implementation of effective strategies to address AMR is raising awareness and cultivating the overall understanding of how the drivers of resistance can be addressed. This can include targeted campaigns for different stakeholders around the drivers of AMR, and a more basic incorporation of AMR considerations in education, for the general public and for professionals in the human, animal and environmental sectors. Here too, stakeholder engagement in the development of such initiatives is key to ensure they are effective.

The findings of this brief reinforce the importance of both horizontal and vertical collaboration, across sectors and between the European, national, regional and local levels. Platforms such as the European Union’s AMR One Health Network, and its envisioned interagency AMR working group can support these objectives. Linked to this is the necessity for a clear definition of responsibilities and the establishment and/or reshaping of the corresponding accountability mechanisms to ensure action can be monitored and adapted as needed. This presupposes strong information systems that can enhance surveillance data towards evaluating policy effectiveness.

The EU has a key role to play, not least by setting a common regulatory framework, defining common standards, monitoring progress towards desired targets, and supporting Member State collaboration and exchange. Additional actions, such as the joint purchasing of antimicrobials or joint incentives for the development of innovative medicines, have been proposed and merit further attention. However, most of the recommended actions discussed in this brief remain within the remit of Member States. Even within Europe, different countries may need to pay particular attention to specific drivers, depending on which contributing factors are most pronounced in their settings. What is more, socioeconomic and sociocultural differences will influence the way strategies to address AMR, be it in terms of availability of diagnostics and medicines or the rollout of behavioural interventions, will impact different population groups within countries, and must be taken into account. Tools such as the WHO AMR Compass can support in identifying areas of particular focus.

Finally, keeping AMR high on international and national political agendas is a prerequisite for sustained support towards the implementation of successful strategies. The current momentum, created on the basis of strong international collaboration at different levels would need to be sustained, and the initiative shown by successive Presidencies of the Council of the European Union would need to be carried forward into the future, linked to the monitoring of progress towards joint targets and the evaluation of successes and failures.
4. References

Brigadoi G et al. (2023). The impact of antimicrobial stewardship programmes in paediatric emergency departments and primary care: A systematic review. Therapeutic Advances in Infectious Diseases, 10:20499361221141771.

Data-driven implementation
European Commission (2022b). HERA factsheet – HEALTH
Zero Pollution Action Plan
European Commission (2021b).
Future-proofing

European Commission (2022b). Data-driven implementation of a behavioural Antimicrobial Stewardship approach and expert consultancy for a more appropriate use of antimicrobials in Europe.

European Court of Auditors (2023). EU efforts for sustainable soil management: Unambitious standards and limited targeting.

European Commission et al. (2023). Study on the barriers to effective development and implementation of national policies on antimicrobial resistance – Final report.

Filippiti ME et al. (2018). Review of transmission routes of 24 infectious diseases preventable by biosecurity measures and comparison of the implementation of these measures in pig herds in six European countries. Transboundary and Emerging Diseases, 65(2):381–398.

Tiseo K et al. (2020). Global trends in antimicrobial use in food animals from 2017 to 2030. *Antibiotics (Basel)*, 9(12):918.

Verhaegen M et al. (2024). Data collection on antibiotics for control of plant pathogenic bacteria. Louvain-la-Neuve, UCLouvain. EFSA Supporting Publications, 21:8522E.

5. Annex

List of attendees during workshop to discuss implementation challenges for AMR policy

EU Member States

<table>
<thead>
<tr>
<th>COUNTRY REPRESENTED</th>
<th>ORGANIZATION REPRESENTED</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>Federal Ministry for Labour, Social Affairs, Health and Consumer Protection</td>
<td>Reinhild Strauss</td>
</tr>
<tr>
<td>Austria</td>
<td>Federal Ministry for Labour, Social Affairs, Health and Consumer Protection</td>
<td>Julia Weber</td>
</tr>
<tr>
<td>Belgium</td>
<td>Federal Public Service Public Health, Food Chain Safety and Environment</td>
<td>Katie Vermeersch</td>
</tr>
<tr>
<td>Belgium</td>
<td>Federal Public Service Public Health, Food Chain Safety and Environment</td>
<td>Ivo Deckers</td>
</tr>
<tr>
<td>Belgium</td>
<td>Federal Public Service Public Health, Food Chain Safety and Environment</td>
<td>Florine Croquet (Reporter)</td>
</tr>
<tr>
<td>Belgium</td>
<td>Federal Public Service Public Health, Food Chain Safety and Environment</td>
<td>Zeynep Darici (Reporter)</td>
</tr>
<tr>
<td>Belgium</td>
<td>Federal Public Service Public Health, Food Chain Safety and Environment</td>
<td>Pascaline Debie (Reporter)</td>
</tr>
<tr>
<td>Croatia</td>
<td>Department of Medical Microbiology at the University Hospital for Infectious Diseases,</td>
<td>Arjana Tambić Andrašević</td>
</tr>
<tr>
<td></td>
<td>Zagreb, Croatia</td>
<td></td>
</tr>
<tr>
<td>Cyprus</td>
<td>Ministry of Health</td>
<td>Linos Hadjihannas</td>
</tr>
<tr>
<td>Cyprus</td>
<td>Archbishop Makarios III Hospital</td>
<td>Markella Marcou</td>
</tr>
<tr>
<td>Czechia</td>
<td>National Health Institute of Czechia</td>
<td>Helena Zemlickova</td>
</tr>
<tr>
<td>Denmark</td>
<td>Danish Health Authority</td>
<td>Gideon Ertner</td>
</tr>
<tr>
<td>Denmark</td>
<td>Danish Veterinary and Food Administration</td>
<td>Pia Holm Jul</td>
</tr>
<tr>
<td>Estonia</td>
<td>Estonian Health Board</td>
<td>Liidia Dotsenko</td>
</tr>
<tr>
<td>Estonia</td>
<td>Ministry of Regional Affairs and Agriculture</td>
<td>Piret Aasmäe</td>
</tr>
<tr>
<td>France</td>
<td>Ministry of Labour, Health, and Solidarity</td>
<td>Agathe Claud</td>
</tr>
<tr>
<td>France</td>
<td>Ministry of Agriculture and Food Sovereignty</td>
<td>Elisa Bohin</td>
</tr>
<tr>
<td>France</td>
<td>Ministry of Labour, Health, and Solidarity</td>
<td>Chantal Guilhaume</td>
</tr>
<tr>
<td>Germany</td>
<td>Environment and Consumer Protection Ministry</td>
<td>Ines Rönnefahrt</td>
</tr>
<tr>
<td>Germany</td>
<td>Health Ministry</td>
<td>Muna Abu Sin</td>
</tr>
<tr>
<td>Germany</td>
<td>Health Ministry</td>
<td>Alexandra Clarici</td>
</tr>
<tr>
<td>Germany</td>
<td>Health Ministry</td>
<td>Ralf Halfmann</td>
</tr>
<tr>
<td>Greece</td>
<td>The National Public Health Organization (NPHO)</td>
<td>Dimitrios Chatzigeorgiou</td>
</tr>
<tr>
<td>Greece</td>
<td>Greek Ministry of Rural Development and Food</td>
<td>Katerina Marinou</td>
</tr>
<tr>
<td>Hungary</td>
<td>Ministry of Human Resources</td>
<td>Krisztina Biró</td>
</tr>
<tr>
<td>Hungary</td>
<td>National Public Health Center Hungary</td>
<td>Ágnes Galgóczi</td>
</tr>
<tr>
<td>Hungary</td>
<td>Ministry of Agriculture</td>
<td>Eszter Kollár-Nagy</td>
</tr>
<tr>
<td>Ireland</td>
<td>National Patient Safety Office</td>
<td>Sharon O’Keeffe</td>
</tr>
</tbody>
</table>
EU Member States

<table>
<thead>
<tr>
<th>COUNTRY REPRESENTED</th>
<th>ORGANIZATION REPRESENTED</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ireland</td>
<td>Department of Agriculture, Food and the Marine</td>
<td>Julie Bolton</td>
</tr>
<tr>
<td>Italy</td>
<td>Ministry of Health</td>
<td>Michela Sabbatucci</td>
</tr>
<tr>
<td>Malta</td>
<td>National AMR Committee</td>
<td>Michael Borg</td>
</tr>
<tr>
<td>Malta</td>
<td>Veterinary Regulation Directorate (VRD) within the Animal Health and Welfare Department (AHWD)</td>
<td>Stephen Spiteri</td>
</tr>
<tr>
<td>Netherlands, Kingdom of the</td>
<td>Netherlands Ministry of Health, Welfare and Sport</td>
<td>Rosa Peran Sala</td>
</tr>
<tr>
<td>Portugal</td>
<td>Member of the National Programme for Prevention of Infection and Antimicrobial Resistance</td>
<td>Inês Leonor Leitão</td>
</tr>
<tr>
<td>Portugal</td>
<td>The General Directorate of Food and Veterinary Affairs</td>
<td>Inês Martins De Almeida</td>
</tr>
<tr>
<td>Romania</td>
<td>Ministry of Health Romania</td>
<td>Roxana Ţerban</td>
</tr>
<tr>
<td>Romania</td>
<td>National Sanitary Veterinary and Food Safety Authority</td>
<td>Mirela Nicola</td>
</tr>
<tr>
<td>Slovakia</td>
<td>National Reference Centre</td>
<td>Martin Sojka</td>
</tr>
<tr>
<td>Slovakia</td>
<td>Ministry of Health</td>
<td>Andrej Vyskoč</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Ministry of Health</td>
<td>Andreja Ljubič</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Ministry of Health</td>
<td>Doroteja Novak Gosarič</td>
</tr>
<tr>
<td>Slovenia</td>
<td>National Institute of Public Health</td>
<td>Zoran Simonovič</td>
</tr>
<tr>
<td>Slovenia</td>
<td>Administration of the Republic of Slovenia for Food Safety, Veterinary Sector and Plant Protection</td>
<td>Anton Svetlin</td>
</tr>
<tr>
<td>Spain</td>
<td>Spanish Agency for Medicines and Health Products</td>
<td>Antonio López Navas</td>
</tr>
<tr>
<td>Spain</td>
<td>Spanish Agency for Medicines and Health Products</td>
<td>Reyes Castillo</td>
</tr>
<tr>
<td>Spain</td>
<td>Spanish Agency for Medicines and Health Products</td>
<td>Ricardo Carapeto García</td>
</tr>
<tr>
<td>Sweden</td>
<td>Public Health Agency of Sweden</td>
<td>Olov Aspevall</td>
</tr>
<tr>
<td>Sweden</td>
<td>Swedish Veterinary Agency</td>
<td>Christina Greko</td>
</tr>
</tbody>
</table>
EU institutions

<table>
<thead>
<tr>
<th>INSTITUTION</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG AGRI</td>
<td>Jean-Charles Cavitte</td>
</tr>
<tr>
<td>DG SANTE</td>
<td>Erba Pietro</td>
</tr>
<tr>
<td>DG SANTE</td>
<td>Pendolovska Velina</td>
</tr>
<tr>
<td>DG SANTE</td>
<td>Sigrid Weiland</td>
</tr>
<tr>
<td>ECDC</td>
<td>Dominique Monnet</td>
</tr>
<tr>
<td>EFSA</td>
<td>Ernesto Liebana</td>
</tr>
<tr>
<td>EMA</td>
<td>Steffen Thistrup</td>
</tr>
<tr>
<td>EMA</td>
<td>Botgros Radu</td>
</tr>
<tr>
<td>European Commission</td>
<td>Hannah Sievers</td>
</tr>
<tr>
<td>HERA</td>
<td>Jean-Baptiste Perrin</td>
</tr>
</tbody>
</table>

International institutions

<table>
<thead>
<tr>
<th>INSTITUTION</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>World Health Organization (WHO) Regional Office for Europe</td>
<td>Danilo Lo Fo Wong</td>
</tr>
</tbody>
</table>
The Policy Brief Series

1. How can European health systems support investment in and the implementation of population health strategies? David McDaid, Michael Drummond, Marc Sucherck

2. How can the impact of health technology assessments be enhanced? Corinna Sorenson, Michael Drummond, Finn Bartram Kretzinsen, Reinhard Busse

3. Where are the patients in decision-making about their own care? Angela Coulter, Suzanne Azzopardi-Muscat, Selina Davis, Benjamin Aschmann

4. How can the settings used to provide care to older people be balanced? Peter C. Coyle, Nick Goodwin, Audrey Laporte

5. When do vertical (stand-alone) programmes have a place in health systems? Rifat A. Atun, Sara Bennett, Antonio Duran

6. How can chronic disease management programmes operate across care settings and providers? Debbie Singh

7. How can the migration of health professional services be reduced? James Buchanan

8. How can optimal skill mix be effectively implemented and why? Lyn Bourgault, Ellen Kuhlmann, Elena Neiterman, Sirpa Wrede

9. Do lifelong learning and revalidation ensure that physicians are fit to practise? Sherry Merkur,ophilia, Elias Mossialos, Martin McKee

10. How can health systems respond to population ageing? Bernd Rechel, Yvonne Doyle, Emily Grundy, Martin McKee

11. How can European states design efficient, equitable and sustainable funding systems for long-term care for older people? José-Luis Fernández, Julien Forder, Birgit Trukeshitz, Martina Rokosová, David McDaid

12. How can gender equity be addressed through health systems? Sarah Payne

13. How can telehealth help in the provision of integrated care? Karl A. Streptomann, Lutz Kubitschke, Simon Robinson, Veel Streptomann, Kevin Cullen, David McDaid

14. How to create conditions for adapting physicians’ skills to new needs and lifelong learning Tanya Horsley, Jeremy Grimson, Craig Campbell

15. How to create an attractive and supportive working environment for health professionals Christiane Wiskow, Tit Albreht, Carlo de Pietro

16. How can knowledge brokering be better supported across European health systems? John N. Lavis, Govin Permanand, Cristina Catallo, BRIDGE Study Team

17. How can knowledge brokering be advanced in a country’s health system? John. N Lavis, Govin Permanand, Cristina Catallo, BRIDGE Study Team

18. How can countries address the equity and efficiency implications of health professional mobility in Europe?實施ing and implementation of the WHo Code and EU freedom of movement Irene A. Grilis, Matthias Wismar, James Buchanan, Ivo Rakovac

19. Investing in health literacy: What do we know about the co-benefits to the education sector of actions targeted at children and young people? David McDaid

20. How can structured cooperation between countries address health workforce challenges related to highly specialized health care? Improving access to services through voluntary cooperation in the EU Marieke Kroezen, James Buchanan, Chrysa Pappas, Irene Grilis, Matthias Wismar

21. How can voluntary cross-border collaboration in public procurement improve access to health technologies in Europe? Jaime Espín, Joan Roxira, Antoinette Calleja, Natasha Azzopardi-Muscat, Eric Richardson, Willy Palm, Dimitra Panteli

22. How to strengthen patient-centredness in caring for people with multimorbidity in Europe? Iris van der Heide, Sanne P Sneijers, Wieken GW Boerman, François GW Schellevis, Mieke P Rijken. On behalf of the ICARE4EU consortium

24. How to strengthen financing mechanisms to promote care for people with multimorbidity in Europe? Verena Struckmann, Wil Quenten, Reinhard Busse, Evout van Ginneken. On behalf of the ICARE4EU consortium

25. How to enhance health care for people with multimorbidity in Europe? Francesco Barbabella, Maria Gabriella Melchiorre, Sabrina Quattrom, Roberta Zito. On behalf of the ICARE4EU consortium

26. How to support integration to promote care for people with multimorbidity in Europe? Anneli Hujala, Helena Taskinen, Sari Rissanen. On behalf of the ICARE4EU consortium

27. How to make sense of health system efficiency comparisons? Jonathan Cylus, Hene Papanicolaou, Giovanni Gravelle

29. Ensuring access to medicines: How to stimulate innovation to meet patients’ needs? Dimitra Panteli, Suzanne Edwards

30. Ensuring access to medicines: How to redesign pricing, reimbursement and governance? Sabine Voge, Valérie Paris, Dimitra Panteli

31. Connecting food systems for co-benefits: How can food systems combine diet-related health with environmental and economic policy goals? Keith Parsons, Corinna Hawkes

33. It’s the governance, stupid! TAPC: a governance framework to strengthen decision making and management of key indicators in the context of the WHO Code and EU freedom of movement Irene A. Grilis, Matthias Wismar, Josep Figueras

34. How to enhance the integration of primary care and public health? Approaches, facilitating factors and policy options Bernd Rechel

35. Screening: When is it appropriate and how can we get it right? Anna Sagan, David McDaid, Selina Davis, Benjamin Aschmann

36. Strengthening health systems resilience: key concepts and strategies Steve Thomas, Anna Sagan, James Larkin, Jonathan Cylus, Josep Figueras, Marina Karanikolas

37. Building on value-based health care Peter C Smith, Anna Sagan, Luigi Siciliani, Dimitra Panteli, Martin McKee, Agnès Soucat, Josep Figueras

38. Ensuring access to medicines: How can health systems make and implement good value-based health care decisions? Scott L. Greer, Nikolai Vasev, Holly Jarman, Matthias Wismar, Josep Figueras

41. How can we transfer service and policy innovations between health systems? Ellen Nolte, Peter Groenevge

42. What are the key priority areas where European health systems can learn from each other? Johan Hansen, Alexander Hasssl, Peter Groenevge, Natasha Azzopardi-Muscat, Gianpaole Tomasielli, Mirchi Poldrugovac

43. Use of digital health tools in Europe: Before, during and after COVID-19 Nick Fahy, Gemma A Williams, COVID-19 Health System Response Monitor Decision Support Network

44. European support for improving health and care systems Nick Fahy, Nicola Mauer, Dimitra Panteli

45. What are patient navigators and how can they improve integration of care? Hannah Budde, Gemma A Williams, Giada Scarpetti, Mariae Kroezen, Claudia B Maiar

46. What are the implications of policies increasing transparency of prices paid for pharmaceuticals? Erin Webb, Eric Richardson, Sabine Voge, Dimitra Panteli

47. How can skill-mix innovations support the implementation of integrated care for people with chronic conditions and multimorbidity? Julianne Winklemann, Giada Scarpetti, Gemma A Williams, Claudia B Maiar

48. Addressing backing and managing waiting lists during and beyond the COVID-19 pandemic Ewout van Ginneken, Sarah Reed, Luigi Siciliani, Astrid Eriksen, Laura Schlepper, Florian Tille, Tomas Zapata

49. Does provider competition improve health care quality and efficiency? Luigi Siciliani, Martin McKee, Hugh Gravell

51. Making Health for All Policies: Harnessing the co-benefits of health Scott L. Greer, Michelle Jenis, Giada Scarpetti, Gemma A Williams, Matthias Wismar, Pranetha Vissapragada, Marie C. Montas,監心蕾 Murard, Olivia Rockwell, Josep Figueras

52. How can the EU support sustainable innovation and access to effective antibiotics? Michael Anderson, Dimitra Panteli, Elias Mossialos

53. Global Health Workforce responses to address the COVID-19 pandemic Angela Ziemann, Cindie Chen, Rebecca Forman, Anna Sagan, Patricia Pittman

54. What can intersectoral governance do to strengthen the health and care workforce? Margaret Caffrey, Tara Tancred, Joanna Raven

55. What steps can improve and promote investment in the health and care workforce? Barbara McPake, Pranetha Vissapragada, Ruzhul Fiza, Julia Zimmermann, Gemma A Williams

56. Strengthening primary care in Europe: How to increase the attractiveness of primary care for medical students and primary care physicians? Marike Kroezen, Dheepa Rajan, Eric Richardson

57. Engaging the private sector in delivering health care and goods: governance lessons from the COVID-19 pandemic Anna Maresco, Ruth Wallberg, Florian Tille, Yuli Livirova, Gabriele Pastorena, Naomi Nathan, David Clarke

58. European support for Cholera: How to improve access to health technologies and policies Scott L Greer, Nicole Mauer, Holly Jarman, Melissa Folkema, Wannita Sriton, Pedro Gomes, Mikael Karsten, Scott L. Greer, Michelle Jenis, Hugh Gravell, Marina Karanikolas, Kira Koch, Kaia Roher-Herold, Bernd Rechel, Rachel Tingley, Suszy Lessof, Guillaume Dedet, Natasha Azzopardi-Muscat, Govin Permanand, Francesca Colombo

59. Assessing health system performance: Probing for concept of a HSPA dashboard of key indicators, Josep Figueras, Maria Rina Karanikolas, Frederico Guanais, Suszy Lessof, Guillaume Dedet, Natasha Azzopardi-Muscat, Govin Permanand, Francesca Colombo

60. Financing for health system transformation: spending more or spending better for people with chronic conditions and multimorbidity? Juliane Winklemann, Giada Scarpetti, Gemma A Williams, Claudia B Maiar

61. How to implement integrated care? A framework with 12 overall strategies to transform care delivery Verena Struckmann, Nathan Shufans, Giada Scarpetti, Willemijn Looman, Roland Ball, Maureen Rutten-van Molek, Ewout van Ginneken

The European Observatory has an independent programme of policy briefs and summaries which are available here: https://eurohealthobservatory.who.int/publications/policy-briefs
The European Observatory on Health Systems and Policies is a partnership that supports and promotes evidence-based health policy-making through comprehensive and rigorous analysis of health systems in the European Region. It brings together a wide range of policy-makers, academics and practitioners to analyse trends in health reform, drawing on experience from across Europe to illuminate policy issues. The Observatory’s products are available on its website (www.healthobservatory.eu).

The Observatory is a partnership, hosted by the WHO Regional Office for Europe, which includes other international organizations (the European Commission); national and regional governments (Austria, Belgium, Finland, Ireland, Netherlands (Kingdom of the), Norway, Slovenia, Spain, Sweden, Switzerland, the United Kingdom and the Veneto Region of Italy (with Agenas)); other health system organizations (the French National Union of Health Insurance Funds (UNCAM), the Health Foundation); and academia (the London School of Economics and Political Science (LSE) and the London School of Hygiene & Tropical Medicine (LSHTM)). The Observatory has a secretariat in Brussels and it has hubs in London (at LSE and LSHTM) and at the Berlin University of Technology.